首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Reconfigurable Smart In-Memory Computing Platform Supporting Logic and Binarized Neural Networks for Low-Power Edge Devices
【24h】

Reconfigurable Smart In-Memory Computing Platform Supporting Logic and Binarized Neural Networks for Low-Power Edge Devices

机译:可重新配置的智能内存计算平台支持低功率边缘设备的逻辑和二金属化神经网络

获取原文
获取原文并翻译 | 示例

摘要

Edge computing has been shown to be a promising solution that could relax the burden imposed onto the network infrastructure by the increasing amount of data produced by smart devices. However, reconfigurable ultra-low power computing architectures are needed. RRAM devices together with the material implication logic (IMPLY) are a promising solution for the development of low-power reconfigurable logic-in-memory (LiM) hardware. Nevertheless, traditional approaches suffer from several issues introduced by the circuit topology and device non-idealities. Recently, SIMPLY, a smart LiM architecture based on the IMPLY, has been proposed and shown to solve the common issues of traditional architectures. Here, we use a physics-based RRAM compact model calibrated on three RRAM technologies to further analyze the performance of SIMPLY in typical operating conditions, when the repeated execution of logic operation on the same group of devices is considered. The results show that, compared to the conventional IMPLY architecture, SIMPLY spares more than 40% of the high voltage pulses on average even when complex operations are considered (e.g., the 1-bit half adder). We also show how SIMPLY can implement the set of operations required for the implementation of Binarized Neural Networks (BNN) and benchmark its performance against other memristor-based BNN in-memory accelerator from the literature. The results suggest that our approach is more than two orders of magnitude efficient compared to the state of the art reconfigurable in-memory computing approach and could potentially reach the performance of specialized BNN analog hardware accelerators with appropriate device-circuit co-design strategies.
机译:边缘计算已被证明是一个有前途的解决方案,可以通过智能设备产生的数据增加的数据来放宽对网络基础设施的负担。但是,需要可重新配置的超低功耗计算架构。 RRAM器件与物料含义逻辑(暗示)是开发低功耗可重新配置逻辑内存(LIM)硬件的有希望的解决方案。然而,传统方法遭受了电路拓扑和设备非理想引入的几个问题。最近,简单地,已经提出了基于暗示的智能LIM架构,并显示出解决传统架构的常见问题。在这里,我们使用三个RRAM技术校准的基于物理的RRAM紧凑型模型,以进一步分析在典型的操作条件下的性能,当考虑了同一组设备上的逻辑操作时,即可进一步分析典型的操作条件。结果表明,与传统意味着架构相比,即使考虑复杂的操作(例如,1位半加法器),即使在复杂的操作(例如,1位半加法器)中,也平均备份超过40%的高压脉冲。我们还展示了如何实际上可以实现实施二金属化神经网络(BNN)所需的一组操作并将其与文献中的其他Memristor的内存加速器的性能进行基准。结果表明,与可重新配置的内存计算方法的状态相比,我们的方法与最新的最新功能相比,效率超过了两个数量级效率,并且可能达到具有适当的设备电路共同设计策略的专业BNN模拟硬件加速器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号