首页> 外文期刊>Embedded Systems Letters, IEEE >WeNA: Deterministic Run-time Task Mapping for Performance Improvement in Many-core Embedded Systems
【24h】

WeNA: Deterministic Run-time Task Mapping for Performance Improvement in Many-core Embedded Systems

机译:WeNA:确定性运行时任务映射,可提高多核嵌入式系统的性能

获取原文
获取原文并翻译 | 示例

摘要

Many-core embedded systems will feature an extremely dynamic workload distribution where massive applications arranged as an unpredictable sequence enter and leave the system at run-time. Efficient mapping strategy is required to allocate system resources to the incoming application. Noncontiguous mapping improves system throughput by utilizing disjoint nodes, however, the increasing communication distance and external congestion lead to high power consumption and network delay. This paper thus presents an enhanced noncontiguous dynamic mapping algorithm, aiming at decreasing interprocessor communication overhead and improving both network and application performance. Communication volumes are utilized to arrange the mapping order of tasks belong to the same application. Moreover, expanding parameter of each task is developed which directs the optimized mapping decision comparing to the current neighborhood and occupancy information. Experimental results show that our modified mapping algorithm Weighted-based Neighborhood Allocation (WeNA) makes considerable improvements on Average Weighted Manhattan Distance (8.06%) and network latency (9.8%) in comparison with the state-of-the-art algorithm.
机译:多核嵌入式系统将具有动态分布的工作负载,其中大量应用程序以不可预测的顺序排列,并在运行时进入和离开系统。需要有效的映射策略才能将系统资源分配给传入的应用程序。非连续映射通过利用不相交的节点来提高系统吞吐量,但是,不断增加的通信距离和外部拥塞导致高功耗和网络延迟。因此,本文提出了一种增强的非连续动态映射算法,旨在减少处理器间的通信开销并提高网络和应用程序性能。通信卷用于安排任务属于同一应用程序的映射顺序。此外,开发了每个任务的扩展参数,该参数将优化的映射决策与当前的邻域和占用信息进行比较。实验结果表明,与最新算法相比,我们改进的映射算法基于加权的邻域分配(WeNA)在平均加权曼哈顿距离(8.06%)和网络延迟(9.8%)上有了很大的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号