首页> 外文期刊>Electronics Letters >Feature selection for multi-class classification using pairwise class discriminatory measure and covering concept
【24h】

Feature selection for multi-class classification using pairwise class discriminatory measure and covering concept

机译:使用成对类别区分度量和覆盖概念的多类别分类特征选择

获取原文
获取原文并翻译 | 示例

摘要

An algorithm is presented for selecting a suboptimal set of features which classify given data into classes as effectively as the entire set of features. The algorithm is useful for reducing the number of features in a multi-class problem. In this algorithm, for each pair of classes a feature is successively selected which best discriminates the pair. The algorithm stops when all the pairs are covered. Preliminary experimental results are good.
机译:提出了一种用于选择次优特征集的算法,该算法将给定数据分类为与整个特征集一样有效的类别。该算法可用于减少多类问题中的特征数量。在该算法中,对于每一对类别,依次选择一个特征,以最好地区分该对。当所有对都覆盖时,算法停止。初步实验结果良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号