首页> 外文期刊>Electronics Letters >Enhanced decision fusion of semantically segmented images via local majority saliency map
【24h】

Enhanced decision fusion of semantically segmented images via local majority saliency map

机译:通过局部多数显着图增强语义分割图像的决策融合

获取原文
获取原文并翻译 | 示例

摘要

Decision fusion is the most important step in ensemble machine learning schemes. One of the greatest challenges of decision fusion is the discrete nature of decisions. This challenge causes decision fusion solutions to become variations of the voting algorithm from statistical perspective. However, increasing the redundancy of decisions imposes a serious computational challenge for real-time systems. Resorting to fewer decisions imposes uncertainty challenges. In this Letter, the authors present a methodology to generate saliency maps for decision fusion. Specifically, they propose a local saliency map for decision fusion using a local majority filter. They choose semantic segmentation via pixel labelling produced from a random decision forest model as a case study. The local saliency map is used to derive three intermediate labelled images that are added to the voting pool and hence rectifying the final decision. The results of the proposed solution reduced the error by 26% and increased robustness by 16% with only two decisions.
机译:决策融合是集成机器学习方案中最重要的一步。决策融合的最大挑战之一是决策的离散性。从统计的角度来看,这一挑战导致决策融合解决方案成为投票算法的变体。然而,增加决策的冗余度对实时系统提出了严重的计算挑战。诉诸较少的决策会带来不确定性挑战。在这封信中,作者提出了一种生成显着性图以进行决策融合的方法。具体来说,他们提出了一个局部显着图,用于使用局部多数过滤器进行决策融合。他们通过从随机决策森林模型中产生的像素标记选择语义分割,作为案例研究。局部显着图用于导出添加到投票池中的三个中间标记图像,从而纠正最终决定。提出的解决方案的结果仅两个决定就将错误减少了26%,并将鲁棒性提高了16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号