A novel two-transistor (2T) floating-body cell (FBC) for embedded-DRAM applications is proposed and demonstrated via device/circuit simulations using a process/physics-based compact model, with numerical-simulation support. Significant advantages of the 2T cell, in which the charged/discharged body of one transistor (1T) drives the gate of the other, over the currently popular 1T-DRAM FBC are noted and explained. Furthermore, a modification of the basic 2T-FBC structure, which in essence results in a floating-body/gate cell (FBGC), is shown to yield dramatic reduction in power dissipation in addition to better signal margin, longer data retention, and higher memory density. Design and processing issues that need to be addressed for optimal performance and for sustained FBGC viability in nanoscale CMOS are discussed.
展开▼