...
首页> 外文期刊>Electron Devices, IEEE Transactions on >Modeling and Simulation of Charge-Pumping Characteristics for LDD-MOSFET Devices With LOCOS Isolation
【24h】

Modeling and Simulation of Charge-Pumping Characteristics for LDD-MOSFET Devices With LOCOS Isolation

机译:具有LOCOS隔离的LDD-MOSFET器件的电荷泵特性建模和仿真

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We propose a model for the so-called constant-amplitude charge-pumping (CP) characteristics, giving the Elliot Gaussian-like CP current curve ($I_{rm CP}$– $V_{L}$) of lightly doped drain (LDD) MOSFET with local oxidation of silicon (LOCOS). This method is based on modulation of the contributing active-channel area $(A_{G})$ to the $I_{rm CP}$ –$V_{L}$ curve, depending on the position of the high and low levels of the gate signal voltage. In addition, it allows to separate and clarify the contribution of all MOSFET regions (such as the effective channel, LDD, LOCOS, and LDD subdiffusion under the LOCOS) to the amount of $I_{rm CP}$– $V_{L}$ curves. We have simulated this model and compared with experimental CP data. The model shows a very good correlation with experimental $I_{rm CP}$ –$V_{L}$ curves, particularly for transistors with short channel gate lengths $(L_{G} leq hbox{1} muhbox{m})$. However, as the channel gate length increases, the model matches only for rising and falling $I_{rm CP}$–$V_{L}$ curve edges, corresponding to the contribution of LDD and LOCOS regions, respectively. Moreover, we have demonstrated that the deviation,-n-n which was observed between the CP model and experimental data at the maximum plateau of $I_{rm CP}$– $V_{L}$ characteristics, depends on the gate pulse fall time and vanishes for large fall time. This difference has been found to behave like a geometric component, since it depends on gate length and fall time and disappears for both short gate lengths and long fall times.
机译:我们针对所谓的恒定幅度电荷泵(CP)特性提出了一个模型,给出了轻掺杂漏极的类似Elliot高斯CP电流曲线($ I_ {rm CP} $ – $ V_ {L} $)( LDD)带有局部氧化硅的MOSFET(LOCOS)。该方法基于调制有效信道区域$(A_ {G})$到$ I_ {rm CP} $ – $ V_ {L} $曲线,具体取决于高电平和低电平的位置。栅极信号电压。此外,它允许分离并阐明所有MOSFET区域(例如,LOCOS下的有效沟道,LDD,LOCOS和LDD子扩散)对$ I_ {rm CP} $ – $ V_ {L}的贡献。 $曲线。我们已经模拟了该模型,并与实验CP数据进行了比较。该模型显示出与实验$ I_ {rm CP} $ – $ V_ {L} $曲线的很好的相关性,特别是对于具有短沟道栅极长度$(L_ {G} leq hbox {1} muhbox {m})$的晶体管而言。但是,随着通道门长度的增加,该模型仅匹配上升和下降曲线$ I_ {rm CP} $ – $ V_ {L} $曲线边缘,分别对应于LDD和LOCOS区域的贡献。此外,我们已经证明,在最大稳定水平为$ I_ {rm CP} $ – $ V_ {L} $特性的CP模型和实验数据之间观察到的偏差nn取决于栅极脉冲的下降时间和消失大量的下降时间。已经发现这种差异的行为类似于几何分量,因为它取决于浇口长度和下降时间,并且对于较短的浇口长度和较长的下降时间都会消失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号