首页> 外文期刊>Electron Devices, IEEE Transactions on >Quantum-Transport Study on the Impact of Channel Length and Cross Sections on Variability Induced by Random Discrete Dopants in Narrow Gate-All-Around Silicon Nanowire Transistors
【24h】

Quantum-Transport Study on the Impact of Channel Length and Cross Sections on Variability Induced by Random Discrete Dopants in Narrow Gate-All-Around Silicon Nanowire Transistors

机译:窄栅全能硅纳米线晶体管中沟道长度和截面对随机离散掺杂引起的变异性影响的量子传输研究。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we review and extend recent work on the effect of random discrete dopants on the statistical variability in gate-all-around silicon nanowire transistors. The electron transport is described using the nonequilibrium Green's function formalism. Full 3-D real-space and coupled-mode-space representations are used. Two different cross sections (i.e., $hbox{2.2} times hbox{2.2}$ and $hbox{4.2} times hbox{4.2} hbox{nm}^{2}$) and two different channel lengths (i.e., 6 and 12 nm) have been considered. The resistivity associated with discrete dopants can be estimated from the averaged current–voltage characteristics. The threshold-voltage variability and the subthreshold-slope variability are reduced greatly in the transistors with longer channel length. Both are smaller at equivalent channel lengths in the $hbox{2.2} times hbox{2.2} hbox{nm}^{2}$ device due to better electrostatic integrity. At the same time, the on-state-current variability associated with the varying resistance of the access regions is virtually independent of the channel length. However, it is reduced greatly in the $hbox{4.2} times hbox{4.2} hbox{nm}^{2}$ transistor due to a fourfold increase in the number of dopants in the access regions and corresponding self-averaging effects. Finally, we present results for the smallest transistor combining two sources of variability (i.e., discrete random dopants and surface roughness) and phonon scattering.
机译:在本文中,我们回顾并扩展了有关随机离散掺杂剂对全栅硅纳米线晶体管统计变异性的影响的最新工作。电子传输是使用非平​​衡格林函数形式主义来描述的。使用完整的3D实空间和耦合模式空间表示。两个不同的横截面(即$ hbox {2.2}乘以hbox {2.2} $和$ hbox {4.2}乘以hbox {4.2} hbox {nm} ^ {2} $)和两个不同的通道长度(即6和12 nm)已被考虑。可以从平均电流-电压特性估算与离散掺杂剂相关的电阻率。在具有更长沟道长度的晶体管中,阈值电压可变性和亚阈值斜率可变性被大大降低。由于具有更好的静电完整性,两者在$ hbox {2.2}乘以hbox {2.2} hbox {nm} ^ {2} $器件中的等效通道长度上都较小。同时,与访问区域的电阻变化相关的导通状态电流可变性实际上与沟道长度无关。然而,由于存取区中掺杂物数量的四倍增加和相应的自平均效应,其在$ hbox {4.2}倍于hbox {4.2} hbox {nm} ^ {2} $晶体管中大大降低了。最后,我们给出了最小的晶体管的结果,该晶体管结合了两个可变性源(即离散随机掺杂剂和表面粗糙度)和声子散射。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号