首页> 外文期刊>IEEE Transactions on Electron Devices >Numerical Computation of Dispersion Curves in Arbitrary Cylindrical Metal SWSs Without Approximating the Boundary Shape With Fourier Series Expansion
【24h】

Numerical Computation of Dispersion Curves in Arbitrary Cylindrical Metal SWSs Without Approximating the Boundary Shape With Fourier Series Expansion

机译:傅里叶级数展开不近似边界形状的任意圆柱金属SWSs色散曲线的数值计算

获取原文
获取原文并翻译 | 示例

摘要

Traditional numerical method of calculating the dispersion curves of arbitrary slow wave structures (SWSs) is to use Fourier series expansion to represent the radius function $r({rm z})$ of the SWSs. This method is inconvenient for we have to try several times to choose proper numbers of Fourier series to approximate the boundary function well and to achieve high numerical accuracy of the dispersion curves simultaneously. In this paper, we derive and solve a universal dispersion equation of the symmetric and asymmetric modes in arbitrary SWSs without using Fourier series expansion to approximate the boundary function.
机译:计算任意慢波结构(SWS)的弥散曲线的传统数值方法是使用傅立叶级数展开来表示SWS的半径函数$ r({rm z})$。这种方法的不便之处在于,我们不得不尝试几次以选择适当数量的傅里叶级数来很好地逼近边界函数,并同时获得较高的色散曲线数值精度。在本文中,我们无需使用傅立叶级数展开来逼近边界函数,就可以推导并求解任意SWS中对称和非对称模的通用色散方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号