首页> 外文期刊>Electron Devices, IEEE Transactions on >Programming Current Reduction via Enhanced Asymmetry-Induced Thermoelectric Effects in Vertical Nanopillar Phase-Change Memory Cells
【24h】

Programming Current Reduction via Enhanced Asymmetry-Induced Thermoelectric Effects in Vertical Nanopillar Phase-Change Memory Cells

机译:通过增强的不对称感应热电效应在垂直纳米柱相变存储单元中减少编程电流

获取原文
获取原文并翻译 | 示例

摘要

Thermoelectric effects are envisioned to reduce programming currents in nanopillar phase-change memory (PCM) cells. However, due to the inherent symmetry in such a structure, the contribution due to thermoelectric effects on programming currents is minimal. In this paper, we propose a hybrid PCM structure, which incorporates a twofold asymmetry specifically aimed to favorably enhance the thermoelectric effects. The first asymmetry is introduced via an interface layer of low thermal conductivity and high negative Seebeck coefficient, such as polycrystalline SiGe, between the bottom electrode contact and the active region comprising the phase-change material. This results in an enhanced Peltier heating of the active material. The second one is introduced structurally via a taper that results in an angle-dependent Thomson heating within the active region. Various device geometries are analyzed using 2-D-axis-symmetric simulations to predict the effect on programming currents as well as for different thicknesses of the interface layer. A programming current reduction of up to 60% is predicted for specific cell geometries. Remarkably, we find that due to an interplay of Thomson cooling in the electrode and the asymmetric heating profile inside the active region, the predicted programming current reduction is resilient to fabrication variability.
机译:设想了热电效应以减少纳米柱相变存储(PCM)单元中的编程电流。但是,由于这种结构固有的对称性,所以由于热电效应对编程电流的贡献是最小的。在本文中,我们提出了一种混合PCM结构,该结构结合了双重不对称性,专门旨在有利于增强热电效应。通过在底部电极触点与包括相变材料的有源区之间的低导热率和高负塞贝克系数的界面层(例如多晶SiGe)引入第一不对称性。这导致活性材料的珀耳帖加热增强。第二个结构是通过锥形结构引入的,该锥形结构在有源区内导致与角度相关的汤姆森加热。使用2-D轴对称仿真分析各种器件的几何形状,以预测对编程电流以及界面层不同厚度的影响。对于特定的单元几何形状,预计编程电流最多可降低60%。值得注意的是,我们发现,由于电极中的汤姆森冷却和有源区内部的不对称加热曲线之间的相互作用,预计的编程电流减小可抵抗制造差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号