首页> 外文期刊>Electron Devices, IEEE Transactions on >Speed Up Quantum Transport Device Simulation on Ferroelectric Tunnel Junction With Machine Learning Methods
【24h】

Speed Up Quantum Transport Device Simulation on Ferroelectric Tunnel Junction With Machine Learning Methods

机译:用机器学习方法加速铁电隧道结的量子传输装置仿真

获取原文
获取原文并翻译 | 示例

摘要

As the device size scales down to the nanometer regime, quantum effects play an important role in device characteristics and performance. Quantum transport device simulation based on the nonequilibrium Green’s function (NEGF) has been extensively applied to simulate the nanoscale devices. The NEGF simulations, however, can be computationally expensive, especially in the presence of scattering. In this study, a machine learning (ML)-based framework is developed, targeting on replacing the computationally intensive NEGF simulations. This framework first learns a sparse representation of a quantum transport property of interest and then trains a model to describe the quantitative mapping relation between the device parameters and properties. Also, the accuracy is further improved with the application of feature engineering. As an example, a graphene–ferroelectric–metal (GFM) ferroelectric tunnel junction (FTJ) is simulated. The results show that the ML-based framework allows circumventing the NEGF calculation and simultaneously maintaining high accuracy in quantum transmissions and tunneling ${I}$ ${V}$ characteristics. This ML-based framework can be applied to speed up the quantum transport device simulations and enable efficient tunneling device design.
机译:随着器件尺寸缩小到纳米尺寸,量子效应在器件特性和性能中起重要作用。基于非Quilibium的功能(NegF)的量子传输装置仿真已被广泛应用于模拟纳米级设备。然而,NegF模拟可以计算得昂贵,特别是在存在散射的情况下。在本研究中,开发了一种基于机器学习(ML)的框架,针对替换计算密集的密集的NEGF模拟。该框架首先了解感兴趣的量子传输属性的稀疏表示,然后列举模型以描述设备参数和属性之间的定量映射关系。此外,利用特征工程的应用进一步改善了精度。例如,模拟了石墨烯 - 铁电 - 金属(GFM)铁电隧道结(FTJ)。结果表明,ML的框架允许绕过NegF计算,同时保持量子传输和隧道的高精度<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {i} $ - <内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {v} $ 特征。可以应用该ML的框架来加速量子传输装置模拟,并实现高效的隧道装置设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号