首页> 外文期刊>Electron Devices, IEEE Transactions on >Comparative Study on Charge Trapping Induced${V}_{extsf{th}}$Shift for GaN-Based MOS-HEMTs With and Without Thermal Annealing Treatment
【24h】

Comparative Study on Charge Trapping Induced${V}_{extsf{th}}$Shift for GaN-Based MOS-HEMTs With and Without Thermal Annealing Treatment

机译:电荷陷阱引起的 $ {V} _ { t​​extsf {th}} $ Shift的比较研究有无热处理的GaN基MOS-HEMT

获取原文
获取原文并翻译 | 示例

摘要

In this paper, threshold voltage (${V}_{{extsf {th}}}$) shift in Al2O3/ AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors (MOS-HEMTs) induced by charge trapping and the impacts of postmetallization annealing (PMA) were studied. In addition to the transient voltage shift caused by interface trapping effect, retentive voltage shift was also observed which was attributed to border traps with very large emission time constant ($u _{e}$). PMA has little influence on the transient${V}_{extsf {th}}$shift which is related to interface traps with$extsf {18}~extsf {s}< u _{e}< extsf {54}$s, while the total interface traps with$extsf {4}~extsf {s} < u _{e}< extsf {54}$s are reduced by PMA from$extsf {4.03} imes extsf {10}^{extsf {12}},,extsf {cm}^{-extsf {2}}$to$extsf {1.77} imes extsf {10}^{extsf {12}},,extsf {cm}^{-extsf {2}}$. Interface trapping dominates at low program voltage (${V}_{p}$), while border trapping becomes remarkable with${V}_{p}$above the critical level. Due to the cumulative border trapping effect, an increase in program voltage by per volt causes an additional retentive voltage shift by about$extsf {1}$V. PMA leads to an increase in critical${V}_{p}$from 5 to 7 V, which therefore results in a decrease in the density of total accessible border traps from$extsf {1.99} imes extsf {10}^{extsf {13}},,extsf {cm}^{-extsf {2}}$to$9.25imes extsf {10}^{extsf {12}}$cm−2with${V}_{p}$up to 12 V. The border trapping for both devices with and without PMA shows similar retention characteristics, with${V}_{{extsf {th}}}$recovery as small as 1.2 V after one week.
机译:在本文中,阈值电压( n $ {V} _ {{ t​​extsf {th}}} $ n )中的Al n 2 nO n 3 n /由电荷陷阱引起的AlGaN / GaN金属氧化物半导体高电子迁移率晶体管(MOS-HEMT)和后金属化退火(PMA)的影响分别为研究。除了由界面俘获效应引起的瞬态电压偏移之外,还观察到保持性电压偏移,其归因于具有非常大的发射时间常数的边界陷阱( n $ tau _ {e} $ n)。 PMA对瞬态 n $ {V} _ { t​​extsf {th}} $ nshift与接口陷阱有关的 n $ textsf {18}〜 textsf {s} < tau _ {e} < textsf {54} $ ns,而总接口会被 n $ textsf {4}〜 textsf {s} < tau _ {e} < textsf {54} $ ns由PMA从 n $ textsf {4.03 } times textsf {10} ^ { t​​extsf {12}} ,, te xtsf {cm} ^ {- textsf {2}} $ nto n $ textsf {1.77} times textsf {10} ^ { t​​extsf {12}} ,, textsf {cm} ^ {- textsf {2}} $ n。接口陷阱在低编程电压下占主导地位( n $ {V} _ {p} $ n),而边界陷印则变为 n <在线公式xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org/1999/xlink “> $ {V} _ {p} $ 超出了临界级别。由于累积的边界陷阱效应,程序电压每伏特的增加导致附加的保持电压偏移约 n $ textsf {1} $ nV。 PMA导致临界 n $ {V} _ {p} $ n从5到7 V导致 n $ textsf {1.99} times textsf {10} ^ { t​​extsf {13} } ,, textsf {cm} ^ {- textsf {2}} $ nto n $ 9.25 times textsf {10} ^ { t​​extsf {12}} $ ncm n −2 nwith n <内联式xmlns: mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http ://www.w3.org/1999/xlink “> $ {V} _ {p} $ nup到12V。具有 n $ {V} _ {{ t​​extsf {th}}} $ < / tex-math> n一周后恢复到1.2V。

著录项

  • 来源
    《Electron Devices, IEEE Transactions on》 |2018年第12期|5343-5349|共7页
  • 作者单位

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China;

    State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Logic gates; Aluminum gallium nitride; Wide band gap semiconductors; Annealing; HEMTs; MODFETs; Electron traps;

    机译:逻辑门;氮化铝镓;宽带隙半导体;退火;HEMT;MODFET;电子陷阱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号