...
首页> 外文期刊>Electron Device Letters, IEEE >Vertically Stacked Strained 3-GeSn-Nanosheet pGAAFETs on Si Using GeSn/Ge CVD Epitaxial Growth and the Optimum Selective Channel Release Process
【24h】

Vertically Stacked Strained 3-GeSn-Nanosheet pGAAFETs on Si Using GeSn/Ge CVD Epitaxial Growth and the Optimum Selective Channel Release Process

机译:使用GeSn / Ge CVD外延生长和最佳选择性沟道释放工艺在硅上垂直堆叠的应变3-GeSn-纳米片pGAAFET

获取原文
获取原文并翻译 | 示例
           

摘要

Fully compressively strained GeSn quantum-well channels sandwiched by Ge sacrificial layers on 200-mm silicon-on-insulator (SOI) wafers are grown using chemical vapor deposition. The transmission electron microscopy images indicate that dislocations are confined near the relaxed Ge buffer/SOI interface, resulting in low defect densities in the stacked GeSn channels. The top Ge cap is essential to ensure that the top GeSn channel matches the other two channels during the Ge etching. Channel release is obtained by etching of the Ge sacrificial layers with optimum ultrasonic-assisted Hn2nOn2n. The low thermal budget gate-stack (400 °C) and S/D parasitic resistance reduction are achieved. The first stacked 3-Gen0.93nSnn0.07n-channel p-gate-all-around FET withn${L} _{text {CH}}= 60$nnm has a record highn${I}_{ mathrm{scriptscriptstyle ON}}=1975~mu text{A}/mu text{m}$n(per channel width) atn${V}_{text {OV}}={V}_{text {DS}}=-1$nV, among all GeSn pFETs. The junctionless device structure is used to simplify the process.
机译:使用化学气相沉积法生长完全压缩应变的GeSn量子阱通道,该通道被Ge牺牲层夹在200毫米绝缘体上硅(SOI)晶片上。透射电子显微镜图像表明,位错被限制在弛豫的Ge缓冲区/ SOI界面附近,导致堆叠的GeSn通道中的缺陷密度低。顶部Ge盖对于确保Ge蚀刻期间顶部GeSn通道与其他两个通道匹配至关重要。通过使用最佳超声辅助Hn 2 nOn 2n。实现了低热预算栅极堆叠(400°C)和S / D寄生电阻的降低。第一个堆叠的3-Gen 0.93 nSnn 0.07 < / sub>具有n $ {L} _ {text {CH}} = 60 $ nnm已有记录highn <内联式xmlns:mml =“ http://www.w3.org/1998/Math/MathML” xmlns:xlink =“ http://www.w3.org/1999/xlink”> $ {I} _ {mathrm {scriptscriptstyle ON}} = 1975〜mu text {A} / mu text {m} $ n(每通道宽度)atn $ {V} _ {text {OV}} = {V} _ {text {DS}} =-1 $ nV场效应管无结器件结构用于简化过程。

著录项

  • 来源
    《Electron Device Letters, IEEE》 |2018年第9期|1274-1277|共4页
  • 作者单位

    Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan;

    Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan;

    Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan;

    Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan;

    Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan;

    Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan;

    Department of Electrical Engineering, Graduate Institute of Electronics Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Silicon; Etching; Resistance; Ions; Rough surfaces; Surface roughness;

    机译:硅;蚀刻;电阻;离子;粗糙表面;表面粗糙度;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号