首页> 外文期刊>Elektrotechnik und Informationstechnik >Efficient numerical simulation of the human voice: simVoice - a three-dimensional simulation model based on a hybrid aeroacoustic approach
【24h】

Efficient numerical simulation of the human voice: simVoice - a three-dimensional simulation model based on a hybrid aeroacoustic approach

机译:高效的人类语音数值模拟:SimVoice - 一种基于混合气流方法的三维仿真模型

获取原文
获取原文并翻译 | 示例

摘要

The process of voice production is a complex process and depends on the correct interaction of the vocal folds and the glottal airstream inducing the primary voice source, which is subsequently modulated by the vocal tract. Due to the restricted access to the glottis, not all aspects of the three-dimensional process can be captured by measurements without influencing the measurement object. Hence, the application of a numerical tool capturing-the physical process of phonation can provide an extended database for voice treatment and, therefore, can contribute to an increased effectiveness of voice treatment. However, such numerical models involve complex and demanding procedures to model the material behavior and the mechanical contact of the vocal folds and to realize moving boundaries of the involved physical domains. The present paper proposes a numerical model called simVoice, which circumvents these computational expenses by prescribing the experimentally obtained vocal fold motion within the simulation. Additionally, a hybrid approach for sound computation further enhances the computational efficiency and yields good agreement with acoustic measurements. An analysis of the computational workloads suggests that the key factor for a further increase in efficiency is an optimized flow simulation and source term computation.
机译:语音制作过程是一种复杂的过程,取决于声带折叠的正确相互作用和引起主要语音源的光学气流,随后被声乐道调节。由于限制了对光泽的访问,并非三维过程的所有方面都可以通过测量来捕获而不会影响测量对象。因此,使用数值工具捕获的应用 - 声理的物理过程可以提供用于语音处理的扩展数据库,因此可以有助于语音治疗的效率增加。然而,这种数值模型涉及复杂和苛刻的程序来模拟物质行为和声带的机械接触,并实现所涉及的物理结构域的移动边界。本文提出了一种称为SimVoice的数值模型,通过规定在模拟中规定实验获得的声学折叠运动来缩短这些计算费用。另外,用于声音计算的混合方法进一步增强了计算效率,并与声学测量产生了良好的一致性。对计算工作负载的分析表明,效率进一步提高的关键因素是优化的流程模拟和源期限计算。

著录项

  • 来源
    《Elektrotechnik und Informationstechnik》 |2021年第3期|219-228|共10页
  • 作者单位

    Institute of Fundamentals and Theory in Electrical Engineering Aero- and Vibroacoustics group TU Graz Inffeldgasse 18 8010 Graz Austria;

    Institute of Fundamentals and Theory in Electrical Engineering Aero- and Vibroacoustics group TU Graz Graz Austria;

    Institute of Fundamentals and Theory in Electrical Engineering Aero- and Vibroacoustics group TU Graz Graz Austria;

    Institute of Fundamentals and Theory in Electrical Engineering Aero- and Vibroacoustics group TU Graz Graz Austria;

    Institute of Fundamentals and Theory in Electrical Engineering Aero- and Vibroacoustics group TU Graz Graz Austria;

    Institute of Fundamentals and Theory in Electrical Engineering Aero- and Vibroacoustics group TU Graz Graz Austria;

    Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology Head & Neck Surgery University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nuernberg Erlangen Germany;

    Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology Head & Neck Surgery University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nuernberg Erlangen Germany;

    Division of Phoniatrics and Pediatric Audiology Department of Otorhinolaryngology Munich University Hospital (LMU) Munich Germany;

    Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology Head & Neck Surgery University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nuernberg Erlangen Germany;

    Institute of Fundamentals and Theory in Electrical Engineering Aero- and Vibroacoustics group TU Graz Graz Austria;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    human voice production; voice disorders; computational biomechanics; computational aeroacoustics (CAA); computational fluid dynamics (CFD);

    机译:人类的语音生产;语音障碍;计算生物力学;计算空气声学(CAA);计算流体动力学(CFD);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号