首页> 外文期刊>Earthquake Engineering & Structural Dynamics >A Taylor basis for kinematic nonlinear real-time simulations. Part II: The Taylor basis
【24h】

A Taylor basis for kinematic nonlinear real-time simulations. Part II: The Taylor basis

机译:运动学非线性实时仿真的泰勒基础。第二部分:泰勒基础

获取原文
获取原文并翻译 | 示例

摘要

Real-time simulations are used to a significant extent in many engineering fields. However, if nonlinearities are included, the real-time requirement significantly limits the size and complexity of numerical models. The present work constitutes the second of two papers where a general basis method to simulate kinematic nonlinear structures more efficiently is introduced. The advantage of the basis formulation is that it enables the number of basis vectors to be increased without increasing the number of unknown basis co-ordinates. This allows for larger numerical kinematically nonlinear models to run in real time. The basis is organized from a Taylor series that includes the system mode shapes and their complete first-order modal derivatives derived in Part I. The Taylor series predicts fixed linear relations between the modal co-ordinates of the system mode shapes and the modal derivatives, respectively. Thus, the full solution is known solely by determining the modal co-ordinates of the mode shapes, which significantly minimizes the computational costs. Furthermore, it is illustrated that the stability of the Taylor basis formulation is dependent on the mode shape frequencies only, allowing the applied time steps to be significantly larger than in standard nonlinear basis analysis. An example illustrates a case where the computational time can be decreased by one order of magnitude using a Taylor basis formulation compared with a standard basis formulation including identical basis vectors.
机译:实时仿真在许多工程领域中都得到了广泛使用。但是,如果包括非线性,则实时要求会极大地限制数值模型的大小和复杂性。本工作构成两篇论文的第二篇,其中介绍了一种更有效地模拟运动非线性结构的通用方法。基本公式的优点在于,它可以增加基本向量的数量,而无需增加未知基本坐标的数量。这允许较大的数值运动非线性模型实时运行。该基础由泰勒级数组成,泰勒级数包含系统模式形状及其在第一部分中得出的完整一阶模态导数。泰勒级数预测系统模态形状的模态坐标与模态导数之间的固定线性关系,分别。因此,仅通过确定模态形状的模态坐标就可以知道完整的解决方案,这极大地减少了计算成本。此外,还说明了泰勒基础公式的稳定性仅取决于模形状频率,从而允许所应用的时间步长明显大于标准非线性基础分析中的时间步长。一个示例示出了如下情况:与包括相同基础矢量的标准基础配方相比,使用泰勒基础配方可以将计算时间减少一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号