...
首页> 外文期刊>Earthquake Engineering & Structural Dynamics >Subspace system identification of support excited structures-part II: gray-box interpretations and damage detection
【24h】

Subspace system identification of support excited structures-part II: gray-box interpretations and damage detection

机译:支撑受激结构的子空间系统识别-第二部分:灰箱解释和损伤检测

获取原文
获取原文并翻译 | 示例
           

摘要

A theoretical framework is presented for the estimation of the physical parameters of a structure (i.e., mass, stiffness, and damping) from measured experimental data (i.e., input-output or output-only data). The framework considers two state-space models: a physics-based model derived from first principles (i.e., white-box model) and a data-driven mathematical model derived by subspace system identification (i.e., black-box model). Observability canonical form conversion is introduced as a powerful means to convert the data-driven mathematical model into a physically interpretable model that is termed a gray-box model. Through an explicit linking of the white-box and gray-box model forms, the physical parameters of the structural system can be extracted from the gray-box model in the form of a finite element discretization. Prior to experimental verification, the framework is numerically verified for a multi-DOF shear building structure. Without a priori knowledge of the structure, mass, stiffness, and damping properties are accurately estimated. Then, experimental verification of the framework is conducted using a six-story steel frame structure under support excitation. With a priori knowledge of the lumped mass matrix, the spatial distribution of structural stiffness and damping is estimated. With an accurate estimation of the physical parameters of the structure, the gray-box model is shown to be capable of providing the basis for damage detection. With the use of the experimental structure, the gray-box model is used to reliably estimate changes in structural stiffness attributed to intentional damage introduced.
机译:提出了一种理论框架,用于根据测量的实验数据(即输入输出或仅输出数据)估算结构的物理参数(即质量,刚度和阻尼)。该框架考虑了两个状态空间模型:从第一原理导出的基于物理学的模型(即白盒模型)和通过子空间系统识别导出的数据驱动的数学模型(即黑盒模型)。引入可观察性规范形式转换是将数据驱动的数学模型转换为物理上可解释的模型(称为灰盒模型)的强大方法。通过显式链接白盒和灰盒模型形式,可以以有限元离散化的形式从灰盒模型中提取结构系统的物理参数。在进行实验验证之前,先对多自由度剪力建筑结构的框架进行数值验证。没有结构的先验知识,就无法准确估计质量,刚度和阻尼特性。然后,在支撑激励下使用六层钢框架结构进行了框架的实验验证。利用集总质量矩阵的先验知识,可以估算结构刚度和阻尼的空间分布。通过准确估计结构的物理参数,灰箱模型显示出能够为损坏检测提供基础。通过使用实验结构,灰盒模型可用于可靠地估算由于引入故意破坏而导致的结构刚度变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号