首页> 外文期刊>Distributed and Parallel Databases >An Adaptive Recommendation System without Explicit Acquisition of User Relevance Feedback
【24h】

An Adaptive Recommendation System without Explicit Acquisition of User Relevance Feedback

机译:无需明确获取用户相关反馈的自适应推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Recommendation systems are widely adopted in e-commerce businesses for helping customers locate products they would like to purchase. In an earlier work, we introduced a recommendation system, termed Yoda, which employs a hybrid approach that combines collaborative filtering (CF) and content-based querying to achieve higher accuracy for large-scale Web-based applications. To reduce the complexity of the hybrid approach, Yoda is structured as a tunable model that is trained off-line and employed for real-time recommendation on-line. The on-line process benefits from an optimized aggregation function with low complexity that allows the real-time aggregation based on confidence values of an active user to pre-defined sets of recommendations. In this paper, we extend Yoda to include more recommendation sets. The recommendation sets can be obtained from different sources, such as human experts, web navigation patterns, and clusters of user evaluations. Moreover, the extended Yoda can learn the confidence values automatically by utilizing implicit users' relevance feedback through web navigations using genetic algorithms (GA). Our end-to-end experiments show while Yoda's complexity is low and remains constant as the number of users and/or items grow, its accuracy surpasses that of the basic nearest-neighbor method by a wide margin (in most cases more than 100%). The experimental results also indicate that the retrieval accuracy is significantly increased by using the GA-based learning mechanism.
机译:推荐系统已在电子商务业务中广泛采用,以帮助客户找到他们想要购买的产品。在较早的工作中,我们引入了一个名为Yoda的推荐系统,该系统采用了一种将协作过滤(CF)和基于内容的查询结合在一起的混合方法,从而可以为大型基于Web的应用程序提供更高的准确性。为了降低混合方法的复杂性,Yoda构造为一种可调模型,该模型经过离线训练并用于在线实时推荐。在线流程得益于低复杂度的优化聚合功能,该功能允许基于活动用户对预定义建议集的置信度值进行实时聚合。在本文中,我们将Yoda扩展为包括更多推荐集。可以从不同来源获得建议集,例如人类专家,Web导航模式和用户评估集群。此外,扩展的Yoda可以通过使用遗传算法(GA)通过网络导航利用隐式用户的相关性反馈来自动学习置信度值。我们的端到端实验表明,虽然Yoda的复杂度较低,并且随着用户和/或商品数量的增长而保持恒定,但其准确性大大超过了基本的最近邻居方法(大多数情况下,超过100% )。实验结果还表明,通过使用基于GA的学习机制,检索准确性显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号