首页> 外文期刊>Distributed Computing >Fast primal-dual distributed algorithms for scheduling and matching problems
【24h】

Fast primal-dual distributed algorithms for scheduling and matching problems

机译:快速的原对偶分布式算法,用于调度和匹配问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper we give efficient distributed algorithms computing approximate solutions to general scheduling and matching problems. All approximation guarantees are within a constant factor of the optimum. By "efficient", we mean that the number of communication rounds is poly-logarithmic in the size of the input. In the scheduling problem, we have a bipartite graph with computing agents on one side and resources on the other. Agents that share a resource can communicate in one time step. Each agent has a list of jobs, each with its own length and profit, to be executed on a neighbouring resource within a given time-window. Each job is also associated with a rational number in the range between zero and one (width), specifying the amount of resource required by the job. Resources can execute non preemptively multiple jobs whose total width at any given time is at most one. The goal is to maximize the profit of the jobs that are scheduled. We then adapt our algorithm for scheduling, to solve the weighted b-matching problem, which is the generalization of the weighted matching problem where for each vertex v, at most b(v) edges incident to v, can be included in the matching. For this problem we obtain a randomized distributed algorithm with approximation guarantee of 1/(6+∈), for any ∈ > 0. For weighted matching, we devise arndeterministic distributed algorithm with the same approximation ratio. To our knowledge, we give the first distributed algorithm for the aforementioned scheduling problem as well as the first deterministic distributed algorithm for weighted matching with poly-logaritmic running time. A very interesting feature of our algorithms is that they are all derived in a systematic manner from primal-dual algorithms.
机译:在本文中,我们给出了有效的分布式算法,用于计算一般调度和匹配问题的近似解。所有的近似保证都在最佳常数之内。 “有效”是指交流回合的数量在输入大小上是对数的。在调度问题中,我们有一个二部图,一侧是计算代理,而另一侧是资源。共享资源的代理可以在一个步骤中进行通信。每个代理都有一个作业列表,每个作业都有自己的长度和利润,可以在给定的时间范围内在相邻资源上执行。每个作业还与一个介于0和1(宽度)之间的有理数相关联,以指定该作业所需的资源量。资源可以非抢先地执行多个作业,这些作业在任何给定时间的总宽度最多为一个。目标是最大程度地提高预定工作的利润。然后,我们将我们的算法用于调度,以解决加权b匹配问题,这是加权匹配问题的一般化,其中对于每个顶点v,最多可以将入射到v的b(v)边包含在匹配中。针对这个问题,对于任意ε> 0,我们获得了一种近似保证为1 /(6 +∈)的随机分布算法。对于加权匹配,我们设计了具有相同近似比率的确定性分布算法。据我们所知,我们给出了针对上述调度问题的第一种分布式算法,以及与多对数运行时间进行加权匹配的第一种确定性分布式算法。我们算法的一个非常有趣的特征是它们都是系统地从原始对偶算法派生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号