首页> 外文OA文献 >Scheduling Distributed Clusters of Parallel Machines: Primal-Dual and LP-based Approximation Algorithms
【2h】

Scheduling Distributed Clusters of Parallel Machines: Primal-Dual and LP-based Approximation Algorithms

机译:调度并行机的分布式集群:原始对偶和基于Lp的近似算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Map-Reduce computing framework rose to prominence with datasets of such size that dozens of machines on a single cluster were needed for individual jobs. As datasets approach the exabyte scale, a single job may need distributed processing not only on multiple machines, but on multiple clusters. We consider a scheduling problem to minimize weighted average completion time of n jobs on m distributed clusters of parallel machines. In keeping with the scale of the problems motivating this work, we assume that (1) each job is divided into m "subjobs" and (2) distinct subjobs of a given job may be processed concurrently. When each cluster is a single machine, this is the NP-Hard concurrent open shop problem. A clear limitation of such a model is that a serial processing assumption sidesteps the issue of how different tasks of a given subjob might be processed in parallel. Our algorithms explicitly model clusters as pools of resources and effectively overcome this issue.Under a variety of parameter settings, we develop two constant factor approximation algorithms for this problem. The first algorithm uses an LP relaxation tailored to this problem from prior work. This LP-based algorithm provides strong performance guarantees. Our second algorithm exploits a surprisingly simple mapping to the special case of one machine per cluster. This mapping-based algorithm is combinatorial and extremely fast. These are the first constant factor approximations for this problem.
机译:Map-Reduce计算框架的规模如此之大,以至于单个任务需要在单个群集上使用数十台机器。随着数据集接近EB级,单个作业可能不仅需要在多台计算机上而且需要在多个群集上进行分布式处理。我们考虑一个调度问题,以最大程度地减少m个分布式并行机集群上n个作业的加权平均完成时间。为了与激发该工作的问题的规模保持一致,我们假设(1)每个工作被划分为m个“子工作”,并且(2)可以同时处理给定工作的不同子工作。当每个群集都是一台机器时,这就是NP-Hard并发开店问题。这种模型的明显局限性是,串行处理假设避开了如何并行处理给定子作业的不同任务的问题。我们的算法显式地将群集建模为资源池,并有效地解决了这个问题。在各种参数设置下,我们针对此问题开发了两种恒定因子近似算法。第一种算法使用根据先前工作针对此问题量身定制的LP松弛。这种基于LP的算法提供了强大的性能保证。我们的第二种算法利用了令人惊讶的简单映射到每个集群一台机器的特殊情况。这种基于映射的算法是组合的并且非常快。这些是该问题的第一个恒定因子近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号