首页> 外文期刊>Discrete and continuous dynamical systems >DYNAMICAL COMPLEXITY OF A PREY-PREDATOR MODEL WITH NONLINEAR PREDATOR HARVESTING
【24h】

DYNAMICAL COMPLEXITY OF A PREY-PREDATOR MODEL WITH NONLINEAR PREDATOR HARVESTING

机译:具有非线性捕食者的食饵-捕食者模型的动力复杂性

获取原文
获取原文并翻译 | 示例

摘要

The objective of this paper is to study systematically the dynamical properties of a predator-prey model with nonlinear predator harvesting. We show the different types of system behaviors for various parameter values. The results developed in this article reveal far richer dynamics compared to the model without harvesting. The occurrence of change of structure or bifurcation in a system with parameters is a way to predict global dynamics of the system. It has been observed that the model has at most two interior equilibria and can exhibit numerous kinds of bifurcations (e.g. saddle-node, transcritical, Hopf-Andronov and Bogdanov-Takens bifurcation). The stability (direction) of the Hopf-bifurcating periodic solutions has been obtained by computing the first Lyapunov number. The emergence of homoclinic loop has been shown through numerical simulation when the limit cycle arising though Hopf-bifurcation collides with a saddle point. Numerical simulations using MATLAB are carried out as supporting evidences of our analytical findings. The main purpose of the present work is to offer a complete mathematical analysis for the model.
机译:本文的目的是系统地研究具有非线性捕食者收获的捕食者—猎物模型的动力学特性。我们显示了各种参数值的不同类型的系统行为。与没有收获的模型相比,本文开发的结果揭示了更丰富的动力学。具有参数的系统中结构变化或分叉的发生是预测系统整体动态的一种方式。已经观察到,该模型最多具有两个内部平衡,并且可以表现出多种分叉(例如,鞍节点,跨临界,Hopf-Andronov和Bogdanov-Takens分叉)。通过计算第一个Lyapunov数,可以获得Hopf分支周期解的稳定性(方向)。通过Hopf分叉产生的极限环与鞍点碰撞时,通过数值模拟已显示出同斜环的出现。使用MATLAB进行的数值模拟是我们分析发现的佐证。本工作的主要目的是为模型提供完整的数学分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号