首页> 外文期刊>Discrete and continuous dynamical systems >ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF A DIFFUSION EQUATION WITH NONLOCAL BOUNDARY CONDITIONS
【24h】

ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF A DIFFUSION EQUATION WITH NONLOCAL BOUNDARY CONDITIONS

机译:具有非局部边界条件的扩散方程解的渐近性态。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider a particular type of nonlinear McKend-rick-von Foerster equation with a diffusion term and Robin boundary condition. We prove the existence of a global solution to this equation. The steady state solutions to the equations that we consider have a very important role to play in the study of long time behavior of the solution. Therefore we address the issues pertaining to the existence of solution to the corresponding state equation. Furthermore, we establish that the solution of McKendrick-von Foerster equation with diffusion converges pointwise to the solution of its steady state equations as time tends to infinity.
机译:在本文中,我们考虑具有扩散项和Robin边界条件的一类特殊的非线性McKend-rick-von Foerster方程。我们证明了该方程的整体解的存在。我们认为方程的稳态解在研究溶液的长时间行为方面起着非常重要的作用。因此,我们解决了与相应状态方程解的存在有关的问题。此外,随着时间趋于无穷大,我们建立了具有扩散的McKendrick-von Foerster方程的解与它的稳态方程的解点向收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号