首页> 外文期刊>Discrete and continuous dynamical systems >LYAPUNOV EXPONENT AND VARIANCE IN THE CLT FOR PRODUCTS OF RANDOM MATRICES RELATED TO RANDOM FIBONACCI SEQUENCES
【24h】

LYAPUNOV EXPONENT AND VARIANCE IN THE CLT FOR PRODUCTS OF RANDOM MATRICES RELATED TO RANDOM FIBONACCI SEQUENCES

机译:Lyapunov与随机纤维序列相关的随机矩阵产品的CLT方差

获取原文
获取原文并翻译 | 示例

摘要

We consider three matrix models of order 2 with one random entry e and the other three entries being deterministic. In the first model, we let (∈) ~ Bernoulli (1/2). For this model we develop a new technique to obtain estimates for the top Lyapunov exponent in terms of a multi-level recursion involving Fibonacci-like sequences. This in turn gives a new characterization for the Lyapunov exponent in terms of these sequences. In the second model, we give similar estimates when (∈) ~ Bernoulli (p) and p ∈ [0, 1] is a parameter. Both of these models are related to random Fibonacci sequences. In the last model, we compute the Lyapunov exponent exactly when the random entry is replaced with ξ∈ where ∈ is a standard Cauchy random variable and ξ is a real parameter. We then use Monte Carlo simulations to approximate the variance in the CLT for both parameter models.
机译:我们考虑三个矩阵模型的订单2,其中一个随机条目e和其他三个条目是确定性的。在第一个模型中,我们让(∈)〜伯努利(1/2)。对于此模型,我们开发了一种新的技术,以便在涉及斐波纳契序列的多级递归方面获得顶级Lyapunov指数的估计。这反过来又为这些序列提供了Lyapunov指数的新表征。在第二种模型中,我们何时(∈)~Bernoulli(P)和P∞[0,1]是一个相似的估计。这两种模型都与随机纤维序列有关。在最后一个模型中,我们将Lyapunov指数精确计算在随机条目被替换为ξ∈hi是标准Cauchy随机变量,并且是一个真实参数时。然后,我们使用Monte Carlo模拟来估计两个参数模型的CLT中的方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号