首页> 外文期刊>Discrete and continuous dynamical systems >OPTIMAL INVESTMENT AND DIVIDEND POLICY IN AN INSURANCE COMPANY: A VARIED BOUND FOR DIVIDEND RATES
【24h】

OPTIMAL INVESTMENT AND DIVIDEND POLICY IN AN INSURANCE COMPANY: A VARIED BOUND FOR DIVIDEND RATES

机译:保险公司的最佳投资和股息政策:股息率的各种各样的界限

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider an optimal dividend problem for an insurance company whose surplus process evolves a classical Cramer-Lundberg process. We impose a varied bound over the dividend rate to raise the dividend payment at a acceptable survival probability. Our objective is to find a strategy consisting of both investment and dividend payment which maximizes the cumulative expected discounted dividend payment until the ruin time. We show that the optimal value function is a unique viscosity solution of the associated Hamilton-Jacobi-Bellman equation with a given boundary condition. We characterize the optimal value function as the smallest viscosity supersolution of the HJB equation. We introduce a method to construct the potential solution of our problem and give a verification theorem to check its optimality. Finally we show some numerical results.
机译:在本文中,我们考虑了一个盈余流程演变的保险公司的最佳股息问题,该过程演变了古典克莱默·伦伯格进程。我们对股息率的各种限制率征收股息率,以便以可接受的生存概率提高股息支付。我们的目标是找到一个策略,包括投资和股息支付,最大化累计预期折扣股息支付,直到破坏时间。我们表明,最佳值函数是具有给定边界条件的相关Hamilton-Jacobi-Bellman方程的独特粘度解。我们将最佳值函数表征为HJB方程的最小粘度取量。我们介绍一种方法来构建我们问题的潜在解决方案,并提供验证定理来检查其最优性。最后,我们展示了一些数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号