首页> 外文期刊>Discrete and continuous dynamical systems▼hSeries S >SYSTEMS OF QUASILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT VIA SUBSOLUTION-SUPERSOLUTION METHOD
【24h】

SYSTEMS OF QUASILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT VIA SUBSOLUTION-SUPERSOLUTION METHOD

机译:依赖于子超解法的梯度的拟线性椭圆型方程组

获取原文
获取原文并翻译 | 示例
           

摘要

For the homogeneous Dirichlet problem involving a system of equations driven by (p, q)-Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.
机译:对于涉及由(p,q)-Laplacian算子驱动的方程组和一般梯度依存关系的齐次Dirichlet问题,我们证明了由子解-上解确定的有序矩形中解的存在。这基于椭圆方程组的基于子解-超解的方法扩展了先前的结果。得到正解和负解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号