首页> 外文期刊>Discrete and continuous dynamical systems >A TWO-SPECIES WEAK COMPETITION SYSTEM OF REACTION-DIFFUSION-ADVECTION WITH DOUBLE FREE BOUNDARIES
【24h】

A TWO-SPECIES WEAK COMPETITION SYSTEM OF REACTION-DIFFUSION-ADVECTION WITH DOUBLE FREE BOUNDARIES

机译:具有两个自由边界的反应-扩散-吸附两类弱竞争系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate a two-species weak competition system of reaction-diffusion-advection with double free boundaries that represent the expanding front in a one-dimensional habitat, where a combination of random movement and advection is adopted by two competing species. The main goal is to understand the effect of small advection environment and dynamics of the two species through double free boundaries. We provide a spreading vanishing dichotomy, which means that both of the two species either spread to the entire space successfully and survive in the new environment as time goes to infinity, or vanish and become extinct in the long run. Furthermore, if the spreading or vanishing of the two species occurs, some sufficient conditions via the initial data are established. When spreading of the two species happens, the long time behavior of solutions and estimates of spreading speed of both free boundaries are obtained.
机译:在本文中,我们研究了具有双自由边界的两物种反应-扩散-对流的弱种群竞争系统,该系统代表一维生境中的扩展前沿,两个竞争物种采用随机运动和对流相结合的方式。主要目标是通过双重自由边界了解小平流环境的影响和两个物种的动力学。我们提供了一个消失的二分法,这意味着这两个物种都可以成功地传播到整个空间并随着时间的流逝而在新的环境中生存,或者从长远来看消失并灭绝。此外,如果发生了两个物种的扩散或消失,则可以通过初始数据确定一些充分条件。当两种物质发生扩散时,可以获得溶液的长时间行为以及两种自由边界的扩散速度的估计值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号