首页> 外文期刊>Discrete & Computational Geometry >Contraction and Expansion of Convex Sets
【24h】

Contraction and Expansion of Convex Sets

机译:凸集的收缩和展开

获取原文
获取原文并翻译 | 示例

摘要

Let S{mathcal{S}} be a set system of convex sets in ℝ d . Helly’s theorem states that if all sets in S{mathcal{S}} have empty intersection, then there is a subset S¢ Ì S{mathcal{S}}'subset{mathcal{S}} of size d+1 which also has empty intersection. The conclusion fails, of course, if the sets in S{mathcal{S}} are not convex or if S{mathcal{S}} does not have empty intersection. Nevertheless, in this work we present Helly-type theorems relevant to these cases with the aid of a new pair of operations, affine-invariant contraction, and expansion of convex sets. These operations generalize the simple scaling of centrally symmetric sets. The operations are continuous, i.e., for small ε>0, the contraction C −ε and the expansion C ε are close (in the Hausdorff distance) to C. We obtain two results. The first extends Helly’s theorem to the case of set systems with nonempty intersection:
机译:令S {mathcal {S}}为ℝ d 中的凸集的集合系统。 Helly定理指出,如果S {mathcal {S}}中的所有集合都具有空交集,则存在子集S¢S S {mathcal {S}}'子集{mathcal {S}},其大小为d + 1,也具有空路口。当然,如果S {mathcal {S}}中的集合不是凸的,或者S {mathcal {S}}没有空交集,则结论将失败。尽管如此,在这项工作中,我们借助于一对新的操作,仿射不变收缩和凸集展开,提出了与这些情况有关的Helly型定理。这些操作概括了中心对称集的简单缩放。这些操作是连续的,即对于较小的ε> 0,收缩C -ε和扩展C ε与C接近(在Hausdorff距离内)。两个结果。第一种将Helly定理扩展到具有非空交集的集合系统的情况:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号