首页> 外文期刊>Discrete & Computational Geometry >Small Drawings of Outerplanar Graphs, Series-Parallel Graphs, and Other Planar Graphs
【24h】

Small Drawings of Outerplanar Graphs, Series-Parallel Graphs, and Other Planar Graphs

机译:外平面图,串联-平行图和其他平面图的小图

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study small planar drawings of planar graphs. For arbitrary planar graphs, Θ(n 2) is the established upper and lower bound on the worst-case area. A long-standing open problem is to determine for what graphs a smaller area can be achieved. We show here that series-parallel graphs can be drawn in O(n 3/2) area, and outerplanar graphs can be drawn in O(nlog n) area, but 2-outerplanar graphs and planar graphs of proper pathwidth 3 require Ω(n 2) area. Our drawings are visibility representations, which can be converted to polyline drawings of asymptotically the same area.
机译:在本文中,我们研究平面图的小型平面图。对于任意平面图,Θ(n 2 )是最坏情况区域的既定上限和下限。一个长期存在的开放问题是确定对于哪些图形可以实现较小的面积。我们在这里显示,可以在O(n 3/2 )区域绘制串联-平行图,而在O(nlog n)区域绘制外部平面图,但是2个平面图和平面图适当的路径宽度3需要Ω(n 2 )面积。我们的图形是可见性表示,可以将其转换为渐近相同区域的折线图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号