首页> 外文期刊>Discrete & Computational Geometry >A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing
【24h】

A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing

机译:超平面的中心横向定理及其在图形绘制中的应用

获取原文
获取原文并翻译 | 示例

摘要

Motivated by an open problem from graph drawing, we study several partitioning problems for line and hyperplane arrangements. We prove a ham-sandwich cut theorem: given two sets of n lines in ℝ2, there is a line ℓ such that in both line sets, for both halfplanes delimited by ℓ, there are (sqrt{n}) lines which pairwise intersect in that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines there is a point such that for any halfplane containing that point there are (sqrt{n/3}) of the lines which pairwise intersect in that halfplane. We generalize those results in higher dimension and obtain a center transversal theorem, a same-type lemma, and a positive portion Erdős–Szekeres theorem for hyperplane arrangements. This is done by formulating a generalization of the center transversal theorem which applies to set functions that are much more general than measures. Back to graph drawing (and in the plane), we completely solve the open problem that motivated our search: there is no set of n labeled lines that are universal for all n-vertex labeled planar graphs. In contrast, the main result by Pach and Toth (J. Graph Theory 46(1):39–47, 2004), has, as an easy consequence, that every set of n (unlabeled) lines is universal for all n-vertex (unlabeled) planar graphs.
机译:基于图形绘制中的一个开放问题,我们研究了线和超平面布置的几个分区问题。我们证明了一个三文治定理:给定ℝ2中的两组n条线,存在一条线ℓ,使得在两个线组中,对于两个以ℓ为界的半平面,存在(sqrt {n})条成对相交的线那个半平面,这个边界很紧;一个中心点定理:对于n条线的任何集合,都有一个点,使得对于包含该点的任何半平面,有(sqrt {n / 3})条线在该半平面中成对相交。我们将这些结果推广到更高的维度,并获得中心横向定理,同类型引理和超平面布置的正部分Erdős-Szekeres定理。这是通过制定中心横向定理的一般化来完成的,该定理适用于比度量更通用的集合函数。回到图形绘制(以及在平面中),我们完全解决了促使我们进行搜索的未解决问题:对于所有n个顶点标记的平面图,没有一组通用的n条标记线。相反,Pach和Toth的主要结果(J.Graph Theory 46(1):39-47,2004)作为一个简单的结果是,每组n(未标记)线对于所有n顶点都是通用的(未标记)平面图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号