首页> 外文期刊>Discrete and continuous dynamical systems >ASYMPTOTIC ANALYSIS OF A STRUCTURE-PRESERVING INTEGRATOR FOR DAMPED HAMILTONIAN SYSTEMS
【24h】

ASYMPTOTIC ANALYSIS OF A STRUCTURE-PRESERVING INTEGRATOR FOR DAMPED HAMILTONIAN SYSTEMS

机译:阻尼Hamilton Systems的结构保存积分器的渐近分析

获取原文
获取原文并翻译 | 示例

摘要

The present work deals with the numerical long-time integration of damped Hamiltonian systems. The method that we analyze combines a specific Strang splitting, that separates linear dissipative effects from conservative ones, with an energy-preserving averaged vector field (AVF) integrator for the Hamiltonian subproblem. This construction faithfully reproduces the energy-dissipation structure of the continuous model, its equilibrium points and its natural Lyapunov function. As a consequence of these structural similarities, both the convergence to equilibrium and, more interestingly, the energy decay rate of the continuous dynamical system are recovered at a discrete level. The possibility of replacing the implicit AVF integrator by an explicit Stormer-Verlet one is also discussed, while numerical experiments illustrate and support the theoretical findings.
机译:本工作涉及阻尼哈密顿系统的数值长期集成。 我们分析的方法结合了特定的突出分离,使保守效应分离了保守的线性耗散效应,用于汉密尔顿子问题的能量保留的平均矢量字段(AVF)积分器。 这种结构忠实地再现了连续模型的能量消耗结构,其平衡点及其天然Lyapunov功能。 由于这些结构相似之处,均匀的均衡和更有意义地,连续动态系统的能量衰减率的收敛性在离散水平上恢复。 还讨论了通过明确的Stormer-Verlet替换隐式AVF积分器的可能性,而数值实验说明并支持理论发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号