首页> 外文期刊>Discrete and continuous dynamical systems >ON THE WELL-POSEDNESS AND DECAY RATES OF STRONG SOLUTIONS TO A MULTI-DIMENSIONAL NON-CONSERVATIVE VISCOUS COMPRESSIBLE TWO-FLUID SYSTEM
【24h】

ON THE WELL-POSEDNESS AND DECAY RATES OF STRONG SOLUTIONS TO A MULTI-DIMENSIONAL NON-CONSERVATIVE VISCOUS COMPRESSIBLE TWO-FLUID SYSTEM

机译:关于多维非保守粘性可压缩两种流体系统强大良好解的良好良好和衰减率

获取原文
获取原文并翻译 | 示例

摘要

The present paper deals with the Cauchy problem of a multidimensional non-conservative viscous compressible two-fluid system. We first study the well-posedness of the model in spaces with critical regularity indices with respect to the scaling of the associated equations. In the functional setting as close as possible to the physical energy spaces, we prove the unique global solvability of strong solutions close to a stable equilibrium state. Furthermore, under a mild additional decay assumption involving only the low frequencies of the data, we establish the time decay rates for the constructed global solutions. The proof relies on an application of Fourier analysis to a complicated parabolic-hyperbolic system, and on a refined time-weighted inequality.
机译:本文涉及多维非保守粘性可压缩两种流体系统的Cauchy问题。我们首先研究与关联方程的缩放相对于关键规律指标的空间中模型的良好良好。在尽可能接近物理能量空间的功能设置中,我们证明了靠近稳定平衡状态的强溶液的独特全局可解性。此外,在仅涉及数据的低频频率的温和额外的衰变假设,我们为构建的全球解决方案建立了时间衰减率。证明依赖于将傅立叶分析应用于复杂的抛物线 - 双曲线系统,并在精致的时间加权不等式中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号