首页> 外文期刊>Discrete and continuous dynamical systems >ON PRINCIPAL SPECTRUM POINTS/PRINCIPAL EIGENVALUES OF NONLOCAL DISPERSAL OPERATORS AND APPLICATIONS
【24h】

ON PRINCIPAL SPECTRUM POINTS/PRINCIPAL EIGENVALUES OF NONLOCAL DISPERSAL OPERATORS AND APPLICATIONS

机译:非本体分散算子和应用的主谱点/主要特征值

获取原文
获取原文并翻译 | 示例

摘要

This paper is to investigate the dependence of the principal spectrum points of nonlocal dispersal operators on underlying parameters and to consider its applications. In particular, we study the effects of the spatial in-homogeneity, the dispersal rate, and the dispersal distance on the existence of the principal eigenvalues, the magnitude of the principal spectrum points, and the asymptotic behavior of the principal spectrum points of nonlocal dispersal operators with Dirichlet type, Neumann type, and periodic boundary conditions in a unified way. We also discuss the applications of the principal spectral theory of nonlocal dispersal operators to the asymptotic dynamics of two species competition systems with nonlocal dispersal operators.
机译:本文旨在研究非局部分散算子主谱点对底层参数的依赖性,并考虑其应用。特别地,我们研究了空间含量,分散率和分散距离对主特征值,主要光谱点的大小的影响,以及非局部分散的主要光谱点的渐近行为的影响运营商具有Dirichlet类型,Neumann类型和定期边界条件,以统一的方式。我们还讨论了非局部分散算子主要光谱理论的应用,以非局部分散算子两种竞争系统的渐近动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号