首页> 外文期刊>Discrete and continuous dynamical systems >SADDLE-NODE OF LIMIT CYCLES IN PLANAR PIECEWISE LINEAR SYSTEMS AND APPLICATIONS
【24h】

SADDLE-NODE OF LIMIT CYCLES IN PLANAR PIECEWISE LINEAR SYSTEMS AND APPLICATIONS

机译:平面分段线性系统和应用中限位周期的鞍座节点

获取原文
获取原文并翻译 | 示例

摘要

In this article, we prove the existence of a saddle-node bifurcation of limit cycles in continuous piecewise linear systems with three zones. The bifurcation arises from the perturbation of a non-generic situation, where there exists a linear center in the middle zone. We obtain an approximation of the relation between the parameters of the system, such that the saddle-node bifurcation takes place, as well as of the period and amplitude of the non-hyperbolic limit cycle that bifurcates. We consider two applications, first a piecewise linear version of the FitzHugh-Nagumo neuron model of spike generation and second an electronic circuit, the memristor oscillator.
机译:在本文中,我们证明了具有三个区域的连续分段线性系统中的极限循环的鞍座节点分叉的存在。分叉产生的非普通情况的扰动,其中中间区域存在线性中心。我们获得了系统参数之间的关系的近似,使得鞍座节点分叉发生,以及分叉的非双相极限循环的周期和幅度。我们考虑两种应用,首先是一款分段线性版本的Fitzhugh-nagumo神经元模型的尖峰发电和第二个电子电路,忆阻器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号