首页> 外文期刊>Discrete and continuous dynamical systems >THE REGULARITY OF SOLUTIONS TO SOME VARIATIONAL PROBLEMS, INCLUDING THE p-LAPLACE EQUATION FOR 3 ≤ p < 4
【24h】

THE REGULARITY OF SOLUTIONS TO SOME VARIATIONAL PROBLEMS, INCLUDING THE p-LAPLACE EQUATION FOR 3 ≤ p < 4

机译:某些变分问题的解的规律性,包括3≤p <4的p-Laplace方程

获取原文
获取原文并翻译 | 示例

摘要

We consider the higher differentiability of solutions to the problem of minimisingintegral(Omega) [L(del v(x)) + g(x, v(x))]dx on u(0) + W-0(1,p) (Omega)where Omega subset of R-N, L(xi) = l(vertical bar xi vertical bar) = 1/p vertical bar xi vertical bar(p) and u(0) is an element of W-1,W-p(Omega) and hence, in particular, the higher differentiability of weak solution to the equationdiv(vertical bar del u vertical bar(p-2)del u) = f.We show that, for 3 <= p < 4, under suitable assumptions on g, there exists a solution u* to the Euler-Lagrange equation associated to the minimisation problem, such thatdel u* is an element of W-loc(s,2)(Omega)for 0 < s < 4-p. In particular, for p = 3, we show that the solution u* is such that del u* is an element of W-loc(s,2)(Omega) for every s < 1. This result is independent of N. We present an example for N = 1 and p = 3 whose solution u is such that del u* is not in W-loc(s,2)(Omega), thus showing that our result is sharp.
机译:我们考虑了u(0)+ W-0(1,p)上的最小积分(Ω)[L(del v(x))+ g(x,v(x))] dx问题的解的较高可微性(Omega)其中RN的Omega子集,L(xi)= l(垂直线xi垂直线)= 1 / p垂直线xi垂直线(p),u(0)是W-1,Wp(Omega的元素) ),因此,特别是方程弱解的可微性div(vertical bar del u vertical bar(p-2)del u)= f。我们证明,对于3 <= p <4, g,存在与最小化问题相关的Euler-Lagrange方程的解u *,使得delu *是W-loc(s,2)Ω的元素,其中0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号