首页> 外文期刊>Discrete and continuous dynamical systems >A POLYGONAL SCHEME AND THE LOWER BOUND ON DENSITY FOR THE ISENTROPIC GAS DYNAMICS
【24h】

A POLYGONAL SCHEME AND THE LOWER BOUND ON DENSITY FOR THE ISENTROPIC GAS DYNAMICS

机译:等规气体动力学的多边形形式和密度的下界

获取原文
获取原文并翻译 | 示例

摘要

Positive density lower bound is one of the major obstacles toward large data theory for one dimensional isentropic compressible Euler equations, also known as p-system in Lagrangian coordinates. The explicit example first studied by Riemann shows that the lower bound of density can decay to zero as time goes to infinity of the order O(1/1+t), even when initial density is uniformly positive. In this paper, we establish a proof of the lower bound on density in its optimal order O(1/1+t) using a method of polygonal scheme.
机译:正密度下界是一维等熵可压缩Euler方程(也称为拉格朗日坐标系中的p系统)的大数据理论的主要障碍之一。 Riemann首先研究的显式示例表明,即使初始密度一致地为正,密度的下界也会随着时间达到O(1/1 + t)的无穷大而衰减为零。在本文中,我们使用多边形方案的方法以其最佳阶O(1/1 + t)建立了密度下界的证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号