首页> 外文期刊>Discrete and continuous dynamical systems >MULTIPLE SOLUTIONS TO A WEAKLY COUPLED PURELY CRITICAL ELLIPTIC SYSTEM IN BOUNDED DOMAINS
【24h】

MULTIPLE SOLUTIONS TO A WEAKLY COUPLED PURELY CRITICAL ELLIPTIC SYSTEM IN BOUNDED DOMAINS

机译:有界域中弱耦合的纯临界椭圆系统的多重解

获取原文
获取原文并翻译 | 示例

摘要

We study the weakly coupled critical elliptic system{-Delta u = mu(1)vertical bar u vertical bar(2)*( -2)u + lambda alpha vertical bar u vertical bar(alpha-2)vertical bar(beta)v vertical bar in Omega,-Delta v = mu(2)vertical bar v vertical bar(2)*( -2)v + lambda beta vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2) v in Omega,u = v = 0 on partial derivative Omega,where Omega is a bounded smooth domain in R-N, N = 3, 2*: = R-N, N = 3, 2* := 2N/N-2 is the critical Sobolev exponent, mu(1, )mu(2 0, alpha, beta 1, alpha + beta = 2)*. and lambda is an element of R.We establish the existence of a prescribed number of fully nontrivial solutions to this system under suitable symmetry assumptions on Omega, which allow domains with finite symmetries, and we show that the positive least energy symmetric solution exhibits phase separation as lambda - -infinity.We also obtain existence of infinitely many solutions to this system in Omega = R-N.
机译:我们研究了弱耦合临界椭圆系统{-Delta u = mu(1)垂直线u垂直线(2)*(-2)u +λalpha垂直线u垂直线(alpha-2)垂直线βv Omega,-Delta中的垂直线v = mu(2)垂直线v垂直线(2)*(-2)v + lambda beta垂直线u垂直线α(垂直线)v垂直线(beta-2)v in在部分导数Omega上的Omega,u = v = 0,其中Omega是RN中的有界光滑域,N> = 3,2 *:= RN,N> = 3,2 *:= 2N / N-2是关键Sobolev指数,mu(1,)mu(2> 0,alpha,beta> 1,alpha + beta = 2)*。我们在Omega上的合适对称性假设下建立了系统中规定数量的完全非平凡解的存在,这允许域具有有限对称性,并且我们证明正能量最小对称解表现出相分离。如lambda-> -infinity。在Omega = RN中,我们还获得了该系统无限多个解的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号