首页> 外文期刊>Discrete and continuous dynamical systems >DELONE MEASURES OF FINITE LOCAL COMPLEXITY AND APPLICATIONS TO SPECTRAL THEORY OF ONE-DIMENSIONAL CONTINUUM MODELS OF QUASICRYSTALS
【24h】

DELONE MEASURES OF FINITE LOCAL COMPLEXITY AND APPLICATIONS TO SPECTRAL THEORY OF ONE-DIMENSIONAL CONTINUUM MODELS OF QUASICRYSTALS

机译:有限局部复杂性的孤子度量及其在准晶体一维连续模型谱理论中的应用

获取原文
获取原文并翻译 | 示例

摘要

We study measures on the real line and present various versions of what it means for such a measure to take only finitely many values. We then study perturbations of the Laplacian by such measures. Using Kotani-Remling theory, we show that the resulting operators have empty absolutely continuous spectrum if the measures are not periodic. When combined with Gordon type arguments this allows us to prove purely singular continuous spectrum for some continuum models of quasicrystals.
机译:我们实际研究度量,并提出各种形式的含义,即仅采用有限多个值的度量。然后,我们通过这种方法研究拉普拉斯算子的扰动。使用Kotani-Remling理论,我们证明了如果测度不是周期性的,则所得算子将具有空的绝对连续谱。当与Gordon类型参数结合使用时,这使我们能够证明某些连续晶体准晶体的纯奇异连续光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号