首页> 外文期刊>Discrete and continuous dynamical systems >SELF-IMPROVEMENT OF THE BAKRY-EMERY CONDITION AND WASSERSTEIN CONTRACTION OF THE HEAT FLOW IN RCD(K, ∞) METRIC MEASURE SPACES
【24h】

SELF-IMPROVEMENT OF THE BAKRY-EMERY CONDITION AND WASSERSTEIN CONTRACTION OF THE HEAT FLOW IN RCD(K, ∞) METRIC MEASURE SPACES

机译:RCD(K,∞)度量空间中热流的Bakry-Eery条件的自改善和Wasserstein压缩

获取原文
获取原文并翻译 | 示例

摘要

We prove that the linear "heat" flow in a RCD(K, ∞) metric measure space (X, d,m) satisfies a contraction property with respect to every L~p-Kantorovich-Rubinstein-Wasserstein distance, p ∈ [1, ∞]. In particular, we obtain a precise estimate for the optimal W_∞-coupling between two fundamental solutions in terms of the distance of the initial points. The result is a consequence of the equivalence between the RCD(K, ∞) lower Ricci bound and the corresponding Bakry-Emery condition for the canonical Cheeger-Dirichlet form in (X, d,m). The crucial tool is the extension to the non-smooth metric measure setting of the Bakry's argument, that allows to improve the commutation estimates between the Markov semigroup and the Carre du Champ Γ associated to the Dirichlet form. This extension is based on a new a priori estimate and a capacitary argument for regular and tight Dirichlet forms that are of independent interest.
机译:我们证明,相对于每个L〜p-Kantorovich-Rubinstein-Wasserstein距离p∈[1],RCD(K,∞)度量空间(X,d,m)中的线性“热”流满足收缩特性。 ,∞]。特别是,我们根据初始点的距离获得了两个基本解之间最优W_∞耦合的精确估计。结果是RCD(K,∞)下Ricci界与(X,d,m)中标准Cheeger-Dirichlet形式的相应Bakry-Emery条件之间相等的结果。至关重要的工具是对Bakry参数的非光滑度量度量设置的扩展,它可以改进Markov半群和与Dirichlet形式相关的Carre du ChampΓ之间的换向估计。此扩展基于新的先验估计和对具有独立利益的规则和紧密Dirichlet形式的容量论证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号