首页> 外文期刊>Discrete and continuous dynamical systems >MULTI-MARGINAL OPTIMAL TRANSPORT AND MULTI-AGENT MATCHING PROBLEMS: UNIQUENESS AND STRUCTURE OF SOLUTIONS
【24h】

MULTI-MARGINAL OPTIMAL TRANSPORT AND MULTI-AGENT MATCHING PROBLEMS: UNIQUENESS AND STRUCTURE OF SOLUTIONS

机译:多边际最优运输和多代理匹配问题:解决方案的唯一性和结构

获取原文
获取原文并翻译 | 示例

摘要

We prove uniqueness and Monge solution results for multi-marginal optimal transportation problems with a certain class of surplus functions; this class arises naturally in multi-agent matching problems in economics. This result generalizes a seminal result of Gangbo and Swiech. Of particular interest, we show that this also yields a partial generalization of the Gangbo-Swiech result to manifolds; alternatively, we can think of this as a partial extension of McCann's theorem for quadratic costs on manifolds to the multi-marginal setting. We also show that the class of surplus functions considered here neither contains, nor is contained in, the class of surpluses studied in, another generalization of Gangbo and Swiech's result.
机译:我们证明了具有一类剩余函数的多边最优运输问题的唯一性和Monge解的结果;此类在经济学中的多主体匹配问题中自然而然地出现。该结果概括了Gangbo和Swiech的开创性结果。特别令人感兴趣的是,我们表明,这也使Gangbo-Swiech结果部分转化为流形。或者,我们可以将其视为麦肯定理的部分扩展,该定理是关于流形到多边际设置的二次成本的。我们还表明,这里考虑的剩余函数类别既不包含也不包含在Gangbo和Swiech结果的另一泛化中研究的剩余类别中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号