首页> 外文期刊>Discrete and continuous dynamical systems >SOME LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL GAMES FOR EQUATIONS IN HILBERT SPACES WITH FRACTIONAL BROWNIAN MOTIONS
【24h】

SOME LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL GAMES FOR EQUATIONS IN HILBERT SPACES WITH FRACTIONAL BROWNIAN MOTIONS

机译:具有分数布朗运动的希尔伯特空间方程组的一些线性二次随机微分游戏

获取原文
获取原文并翻译 | 示例

摘要

A noncooperative, two person, zero sum, stochastic differential game is formulated and solved that is described by a linear stochastic equation in a Hilbert space with a fractional Brownian motion and a quadratic payoff functional for the two players. The stochastic equation can model stochastic partial differential equations not only with distributed strategies and noise but also with control strategies and noise restricted to the boundary of the domain. The optimal strategies for the two players are given explicitly. The verification method is a generalization of completion of squares and provides the optimal strategies directly without solving partial differential equations or backward stochastic differential equations. Some examples of games described by stochastic partial differential equations are given.
机译:制定并解决了一个非合作的,两人,零和,随机的差分博弈,该博弈由希尔伯特空间中的线性随机方程描述,该函数具有分数布朗运动和两个参与者的二次收益函数。随机方程不仅可以使用分布策略和噪声,而且可以将控制策略和噪声限制在域的边界上,对随机偏微分方程进行建模。明确给出了两个参与者的最佳策略。验证方法是对平方完成的一种概括,它直接提供了最佳策略,而无需求解偏微分方程或后向随机微分方程。给出了用随机偏微分方程描述的博弈的一些例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号