首页> 外文期刊>Discrete and continuous dynamical systems >GLOBAL WELL-POSEDNESS FOR THE DISSIPATIVE SYSTEM MODELING ELECTRO-HYDRODYNAMICS WITH LARGE VERTICAL VELOCITY COMPONENT IN CRITICAL BESOV SPACE
【24h】

GLOBAL WELL-POSEDNESS FOR THE DISSIPATIVE SYSTEM MODELING ELECTRO-HYDRODYNAMICS WITH LARGE VERTICAL VELOCITY COMPONENT IN CRITICAL BESOV SPACE

机译:临界贝索夫空间中具有大垂直速度分量的电液动力学建模耗散系统的整体性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are concerned with a model arising from electro-hydrodynamics, which is a coupled system of the Navier-Stokes equations and the Poisson-Nernst-Planck equations through charge transport and external forcing terms. The local well-posedness and global well-posedness with small initial data to the 3-D Cauchy problem of this system are established in the critical Besov space B_(p,1)~(-1+3/p) (R~3) x (B_(q,l) ~(-2+3/q) (R~3))~2 with suitable choices of p, q. Especially, we prove that there exist two positive constants c_o,C_o depending on the coefficients of system except μ such that if then the above local solution can be extended to the global one. This result implies the global well-posedness of this system with large initial vertical velocity component.
机译:在本文中,我们关注的是由电动流体动力学产生的模型,该模型是通过电荷传输和外部强迫项将Navier-Stokes方程和Poisson-Nernst-Planck方程耦合的系统。在临界Besov空间B_(p,1)〜(-1 + 3 / p)(R〜3)中建立了具有该系统3-D Cauchy问题的少量初始数据的局部适定性和全局适定性)x(B_(q,l)〜(-2 + 3 / q)(R〜3))〜2,其中p,q适当选择。尤其是,我们证明存在取决于系统系数的两个正常数c_o,C_o,除了μ之外,因此,如果上述局部解可以扩展为整体解。该结果暗示了该系统具有良好的初始垂直速度分量的整体良好状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号