首页> 外文期刊>Discrete and continuous dynamical systems >REGULARIZATION OF SLIDING GLOBAL BIFURCATIONS DERIVED FROM THE LOCAL FOLD SINGULARITY OF FILIPPOV SYSTEMS
【24h】

REGULARIZATION OF SLIDING GLOBAL BIFURCATIONS DERIVED FROM THE LOCAL FOLD SINGULARITY OF FILIPPOV SYSTEMS

机译:由FILIPPOV系统的局部折叠奇异性推导的滑动全局分叉的调节。

获取原文

摘要

In this paper we study the Sotomayor-Teixeira regularization of a general visible fold singularity of a planar Filippov system. Extending Geometric Fenichel Theory beyond the fold with asymptotic methods, we determine the deviation of the orbits of the regularized system from the generalized solutions of the Filippov one. This result is applied to the regularization of global sliding bifurcations as the Grazing-Sliding of periodic orbits and the Sliding Homoclinic to a Saddle, as well as to some classical problems in dry friction. Roughly speaking, we see that locally, and also globally, the regularization of the bifurcations preserve the topological features of the sliding ones.
机译:在本文中,我们研究了平面Filippov系统的一般可见折叠奇点的Sotomayor-Teixeira正则化。用渐近方法将几何费尼切尔理论扩展到非折叠之外,我们从Filippov one的广义解确定正则化系统的轨道偏差。该结果适用于整体滑动分叉的正则化,例如周期性轨道的Grazing-Sliding和向鞍形的同质滑动,以及干摩擦中的一些经典问题。粗略地说,我们看到在局部乃至全球范围内,分支的正则化保留了滑动分支的拓扑特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号