首页> 外文期刊>Discrete and continuous dynamical systems >DISCRETE CONLEY INDEX THEORY FOR ZERO DIMENSIONAL BASIC SETS
【24h】

DISCRETE CONLEY INDEX THEORY FOR ZERO DIMENSIONAL BASIC SETS

机译:零维基本集的离散Conley指数理论

获取原文
获取原文并翻译 | 示例

摘要

In this article the discrete Conley index theory is used to study diffeomorphisms on closed differentiable n-manifolds with zero dimensional hyperbolic chain recurrent set. A theorem is established for the computation of the discrete Conley index of these basic sets in terms of the dynamical information contained in their associated structure matrices. Also, a classification of the reduced homology Conley index of these basic sets is presented using its Jordan real form. This, in turn, is essential to obtain a characterization of a pair of connection matrices for a Morse decomposition of zero-dimensional basic sets of a diffeomorphism.
机译:在本文中,离散康利指数理论用于研究零维双曲链递归集在闭合可微n流形上的亚纯。建立了一个定理,用于根据这些基本集合的关联结构矩阵中包含的动态信息来计算这些基本集合的离散Conley指数。此外,使用其约旦实数形式对这些基本集合的降低同源性Conley指数进行分类。反过来,这对于获得用于微分同构的零维基本集的莫尔斯分解的一对连接矩阵的表征至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号