首页> 外文期刊>Computational and Structural Biotechnology Journal >Mechanism of recognition of parallel G-quadruplexes by DEAH/RHAU helicase DHX36 explored by molecular dynamics simulations
【24h】

Mechanism of recognition of parallel G-quadruplexes by DEAH/RHAU helicase DHX36 explored by molecular dynamics simulations

机译:分子动力学模拟探索的DEAH / Rhau Helicalase DHX36识别平行G-Quadruples的机制

获取原文

摘要

Because of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type G4s using all-atom molecular dynamics simulations. By computing binding free energies, we found that the two main G4-interacting subdomains of DHX36, DSM and OB, separately exhibit high G4 affinity but they act cooperatively to recognize two distinctive features of parallel G4s: the exposed planar face of a guanine tetrad and the unique backbone conformation of a continuous guanine tract, respectively. Our results also show that DSM-mediated interactions are the main contributor to the binding free energy and rely on making extensive van der Waals contacts between the GXXXG motifs and hydrophobic residues of DSM and a flat guanine plane. Accordingly, the sterically more accessible 5′-G-tetrad allows for more favorable van der Waals and hydrophobic interactions which leads to the preferential binding of DSM to the 5′-side. In contrast to DSM, OB binds to G4 mostly through polar interactions by flexibly adapting to the 5′-terminal guanine tract to form a number of strong hydrogen bonds with the backbone phosphate groups. We also identified a third DHX36/G4 interaction site formed by the flexible loop missing in the crystal structure.
机译:由于高稳定性和G-quadrupleS(G4)的慢展开速率,细胞已经进化了以ATP依赖性方式破坏这些非规范性DNA和RNA结构的专用螺旋酶。一个例子是DHX36,一种DEAH盒螺旋酶,其通过识别和解除平行G4s来参与基因表达和复制。在此,我们使用全原子分子动力学模拟研究了DHX36的高亲和力和特异性的分子基础。通过计算绑定能量,我们发现DHX36,DSM和OB的两个主要G4相互作用子域,分别表现出高G4亲和力,但它们协同起作用,以识别平行G4s的两个独特特征:鸟嘌呤Tetrad的暴露的平面面连续鸟嘌呤道的独特骨干构象。我们的研究结果还表明,DSM介导的相互作用是绑定自由能的主要因素,并依赖于DSM和平鸟嘌呤平面​​的GXXXG基序和疏水性残留物之间的广泛van der WaaS触点。因此,通常易于易于的5'-G-Tetrad允许更有利的范德华和疏水相互作用,这导致DSM对5'侧的优先结合。与DSM相比,通过灵活地适应5'-末端鸟嘌呤散,以形成许多与骨干磷酸酯基团的强氢键,大部分通过极性相互作用与G4相结合。我们还识别了由晶体结构中缺失的柔性环形成的第三DHX36 / G4相互作用位点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号