首页> 外文期刊>Coatings >A Numerical Investigation on the Combined Effects of MoSe2 Interface Layer and Graded Bandgap Absorber in CIGS Thin Film Solar Cells
【24h】

A Numerical Investigation on the Combined Effects of MoSe2 Interface Layer and Graded Bandgap Absorber in CIGS Thin Film Solar Cells

机译:CIGS薄膜太阳能电池中MOSE2界面层和分级带隙吸收剂的组合效应的数值研究

获取原文
           

摘要

The influence of Molybdenum diselenide (MoSe2) as an interfacial layer between Cu(In,Ga)Se2 (CIGS) absorber layer and Molybdenum (Mo) back contact in a conventional CIGS thin-film solar cell was investigated numerically using SCAPS-1D (a Solar Cell Capacitance Simulator). Using graded bandgap profile of the absorber layer that consist of both back grading (BG) and front grading (FG), which is defined as double grading (DG), attribution to the variation in Ga content was studied. The key focus of this study is to explore the combinatorial effects of MoSe2 contact layer and Ga grading of the absorber to suppress carrier losses due to back contact recombination and resistance that usually occur in case of standard Mo thin films. Thickness, bandgap energy, electron affinity and carrier concentration of the MoSe2 layer were all varied to determine the best configuration for incorporating into the CIGS solar cell structure. A bandgap grading profile that offers optimum functionality in the proposed configuration with additional MoSe2 layer has also been investigated. From the overall results, CIGS solar cells with thin MoSe2 layer and high acceptor doping concentration have been found to outperform the devices without MoSe2 layer, with an increase in efficiency from 20.19% to 23.30%. The introduction of bandgap grading in the front and back interfaces of the absorber layer further improves both open-circuit voltage (VOC) and short-circuit current density (JSC), most likely due to the additional quasi-electric field beneficial for carrier collection and reduced back surface and bulk recombination. A maximum power conversion efficiency (PCE) of 28.06%, fill factor (FF) of 81.89%, JSC of 39.45 mA/cm2, and VOC of 0.868 V were achieved by optimizing the properties of MoSe2 layer and bandgap grading configuration of the absorber layer. This study provides an insight into the different possibilities for designing higher efficiency CIGS solar cell structure through the manipulation of naturally formed MoSe2 layer and absorber bandgap engineering that can be experimentally replicated.
机译:使用SCAPS-1D在数值上进行数值在数值上研究了钼(In,Ga)Se2(CIGs)Se2(CIGS)吸收层和钼(Mo)背接触之间的界面层的界面层的界面层的影响(a太阳能电池电容模拟器)。使用由反差分(BG)和前分级(FG)组成的吸收层的分级带隙谱,其定义为双分级(DG),研究了对GA内容的变化的归因。本研究的关键焦点是探讨吸收器的MOSE2接触层和GA分级的组合效应,以抑制由于在标准MO薄膜的情况下通常发生的背部接触重组和电阻而抑制载体损失。 MOSE2层的厚度,带隙能量,电子亲和力和载体浓度全部变化以确定结合CIGS太阳能电池结构中的最佳结构。还研究了具有额外的MOSE2层的提出的配置中提供最佳功能的带隙分级轮廓。从整体结果中,已经发现具有薄mose2层和高受体掺杂浓度的CIGS太阳能电池以优于没有MOSE2层的器件,从20.19%增加到23.30%。在吸收层层的前后接口中引入带隙分级,进一步改善了开路电压(VOC)和短路电流密度(JSC),很可能是由于载体收集的附加准电器和额外的准电气场减少后表面和散装重组。通过优化吸收层和带隙分级配置的性能,实现了81.89%,JSC的最大功率转换效率(PCE),填充因子(FF)为81.89%,JSC为39.45mA / cm 2,以及0.868V的VOC。 。本研究通过操作可以通过实验复制的自然形成的MOSE2层和吸收带隙工程,对设计更高效率CIGS太阳能电池结构的不同可能性的洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号