首页> 外文期刊>Geoscientific Model Development Discussions >Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry
【24h】

Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry

机译:方位级平均重建滤波技术在球面几何中有限差分通用循环模型

获取原文

摘要

When solving hydrodynamic equations in spherical or cylindrical geometry using explicit finite-difference schemes, a major difficulty is that the time step is greatly restricted by the clustering of azimuthal cells near the pole due to the Courant–Friedrichs–Lewy condition. This paper adapts the azimuthal averaging–reconstruction (ring average) technique to finite-difference schemes in order to mitigate the time step constraint in spherical and cylindrical coordinates. The finite-difference ring average technique averages physical quantities based on an effective grid and then reconstructs the solution back to the original grid in a piecewise, monotonic way. The algorithm is implemented in a community upper-atmospheric model, the Thermosphere–Ionosphere Electrodynamics General Circulation Model?(TIEGCM), with a horizontal resolution up to 0.625 ° × 0.625 ° in geographic longitude–latitude coordinates, which enables the capability of resolving critical mesoscale structures within the TIEGCM. Numerical experiments have shown that the ring average technique introduces minimal artifacts in the polar region of general circulation model?(GCM) solutions, which is a significant improvement compared to commonly used low-pass filtering techniques such as the fast Fourier transform method. Since the finite-difference adaption of the ring average technique is a post-solver type of algorithm, which requires no changes to the original computational grid and numerical algorithms, it has also been implemented in much more complicated models with extended physical–chemical modules such as the Coupled Magnetosphere–Ionosphere–Thermosphere?(CMIT) model and the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension?(WACCM-X). The implementation of ring average techniques in both models enables CMIT and WACCM-X to perform global simulations with a much higher resolution than that used in the community versions. The new technique is not only a significant improvement in space weather modeling capability, but it can also be adapted to more general finite-difference solvers for hyperbolic equations in spherical and polar geometries. Highlights. The ring average technique is adapted to solve the issue of clustered grid cells in polar and spherical coordinates with a finite-difference method. The ring average technique is applied to develop a 0.625 ° × 0.625 ° high-resolution TIEGCM and more complicated geoscientific models with polar and spherical coordinates as well as finite-difference numerical schemes. The high-resolution TIEGCM shows good capability in resolving mesoscale structures in the ionosphere–thermosphere (I–T)?system.
机译:当使用显式有限差分方案求解球形或圆柱形几何形状中的流体动力方程时,主要难度是由于傅小姐 - 弗里德里希病条件,方位角细胞的聚类极大地限制了时间步长。本文适应方位级平均 - 重建(环平均)技术,以减轻球形和圆柱坐标的时间步骤约束。有限差异环平均技术平均基于有效电网的物理量,然后将解决方案重新构建回原始网格,单调的方式。该算法在社区大气模型中实现,热层电离层电动力通用循环模型?(Tiegcm),水平分辨率高达0.625°×0.625°的地理经纬度坐标,这使得能够解决关键的能力铁杆内的Mescle结构。数值实验表明,环平均技术在通用循环模型的极性区域中引入了最小的伪像?(GCM)解决方案,与常用的低通滤波技术(如快速傅里叶变换方法)相比,这是一个显着的改进。由于环形平均技术的有限差分调整是求解器类型的算法,这不需要对原始计算网格和数值算法的变化,因此它也已经以更加复杂的模型实现,具有扩展的物理化学模块作为耦合磁层 - 电离层 - 热圈?(CMIT)模型和全部大气群落气候模型与热圈和电离层延伸?(WACCM-X)。两种模型中的环形平均技术的实现使CMIT和WACCM-X能够以比社区版本中使用的更高的分辨率来执行全局模拟。新技术不仅是太空天气建模能力的显着提高,而且还可以适应球形和极地几何形状中的双曲线方程的更通用有限差分求解器。强调。环平均技术适于通过有限差分法解决极性和球形坐标中的聚类网格细胞的问题。施加环平均技术以开发0.625°×0.625°的高分辨率连接和更复杂的地球电模型,具有极性和球形坐标以及有限差分数值方案。高分辨率TieGCM在解析离子层 - 热层(I-T)中的介质结构方面具有良好的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号