首页> 外文期刊>Shock and vibration >Finite Element Analysis on Acoustic and Mechanical Performance of Flexible Perforated Honeycomb-Corrugation Hybrid Sandwich Panel
【24h】

Finite Element Analysis on Acoustic and Mechanical Performance of Flexible Perforated Honeycomb-Corrugation Hybrid Sandwich Panel

机译:柔性穿孔蜂窝瓦楞杂交夹芯板声学与机械性能有限元分析

获取原文
           

摘要

Since proposed, the perforated honeycomb-corrugation sandwich panel has attracted a lot of attention due to its superior broadband sound absorption at low frequencies and excellent mechanical stiffness/strength. However, most existing studies have assumed a structure made of high-strength materials and studied its performance based on the ideal rigid-wall model with little consideration for acoustic-structure interaction, thereby neglecting the structural vibrations caused by the material’s elasticity. In this paper, we developed a more realistic model considering the solid structural dynamics using the finite element method (FEM) and by applying aluminum and rubber as the structural material. The enhancement of the low-frequency performance and inhibition of broadband absorption coexisted in low-strength rubbers, implying a compromise in the selection of Young's modulus to balance these two influences. Further analysis on thermal-viscous dissipation, mechanical energy, and average structural stress indicated that the structure should work right below the resonant frequency for optimization. Based on these findings, we designed a novel aluminum-rubber composite structure possessing enhanced low-frequency absorption, high resistance to shear load, normal compression, and thermal expansion. Our research is expected to shed some light on noise control and the design of multifunctional acoustic metamaterials.
机译:由于提出,穿孔蜂窝状 - 波纹夹心板由于其优越的宽带吸音,并且在低频下具有优异的机械刚度/强度,因此引起了很多关注。然而,大多数现有的研究已经假定了一种由高强度材料制成的结构,并基于理想的刚性墙模型研究了其性能,几乎不考虑声结构相互作用,从而忽略了材料弹性引起的结构振动。在本文中,我们开发了一种更现实的模型,考虑了使用有限元方法(FEM)和施加铝和橡胶作为结构材料的固体结构动态。增强低频性能和对低强度橡胶中的宽带吸收的抑制,暗示在选择杨氏模量方面的折衷,以平衡这两个影响。进一步分析热粘性耗散,机械能和平均结构应力,表明该结构应在谐振频率下方工作以进行优化。基于这些发现,我们设计了一种新型铝 - 橡胶复合结构,具有增强的低频吸收,高抗剪切载荷,正常压缩和热膨胀。我们的研究预计将阐明噪声控制和多功能声学超材料的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号