...
首页> 外文期刊>RSC Advances >Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor
【24h】

Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor

机译:使用固态纳米孔传感器的Telomete G-Quadruplees的无标记单分子鉴定

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Telomere sequences can spontaneously form G-quadruplexes (G4) in the presence of some cations. In view of their relevance to genetic processes and potential as therapeutic-targets, hitherto, a wealth of conventional techniques have been reported for interrogation of G4 conformation diversity and corresponding folding kinetics, most of which are limited in precision and sensitivity. This work introduces a label-free solid-state nanopore (SSN) approach for the determination of inter-, intra- and tandem molecular G4 with distinct base permutation in various cation buffers with a tailored aperture and meanwhile captures the single-molecule G4 folding process. SSN translocation properties elucidated that both inter- and intramolecular G4 generated higher current blockage with longer duration than flexible homopolymer nucleotide, and intramolecular G4 are structurally more stable with higher event frequency and longer blockage time than intermolecular ones; base arrangement played weak role in translocation behaviors; the same sequences with one, two and three G4 skeletons displayed an increase in current blockage and a gradual extension in dwell time with the increase of molecule size recorded in the same nanopore. We observed the conformation change of single-molecule G4 which indicated the existence of folding/unfolding equilibration in nanopore, and real-time test suggested a gradual formation of G4 with time. Our results could provide a continued and improved understanding of the underlying relevance of structural stability and G4 folding process by utilizing SSN platform which exhibits strategic potential advances over the other methods with high spatial and temporal resolution.
机译:在一些阳离子的存在下,端粒序列可以自发地形成G-Quadreples(G4)。鉴于其与遗传过程和潜力的相关性,迄今为止,已经据报道了大量常规技术用于询问G4构象多样性和相应的折叠动力学,其中大部分是精密和灵敏度的限制。该工作引入了一种无标签的固态纳米孔(SSN)方法,用于测定具有不同阳离子缓冲器中具有不同基本置换的无标签和串联分子G4的方法,该孔径具有定制的孔径,同时捕获单分子G4折叠过程。 SSN易位性能阐明,与柔性均聚物核苷酸的持续时间较长的持续时间和分子内G4均产生比柔性均聚物核苷酸更长的堵塞,并且分子内G4具有比分子间频率更高的事件频率和堵塞时间更稳定的结构更稳定;基本安排在易位行为中发挥了较弱的作用;与一个,两个和三个G4骨架的相同序列显示出电流堵塞的增加和停留时间中的渐变延伸,随着在同一个纳米孔中记录的分子尺寸的增加而增加。我们观察到单分子G4的构象变化,这表明存在纳米孔中的折叠/展开平衡的存在,并且实时测试表明G4的逐渐形成随时间。我们的结果可以通过利用SSN平台来提供对结构稳定性和G4折叠过程的潜在相关性的持续和改进的理解,该平台对具有高空间和时间分辨率的其他方法表现出战略潜在的进步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号