...
首页> 外文期刊>RSC Advances >Developing an effective polarizable bond method for small molecules with application to optimized molecular docking
【24h】

Developing an effective polarizable bond method for small molecules with application to optimized molecular docking

机译:用应用于优化分子对接的小分子开发有效的可极化键方法

获取原文

摘要

Electrostatic interaction plays an essential role in protein–ligand binding. Due to the polarization effect, electrostatic interactions are largely impacted by their local environments. However, traditional force fields use fixed point charge–charge interactions to describe electrostatic interactions but is unable to include the polarization effect. The lack of the polarization effect in the force field representation can result in substantial error in biomolecular studies, such as molecular dynamics and molecular docking. Docking programs usually employ traditional force fields to estimate the binding energy between a ligand and a protein for pose selection or scoring. The intermolecular interaction energy mainly consists of van der Waals and electrostatic interaction in the force field representation. In the current study, we developed an Effective Polarizable Bond (EPB) method for small organic molecules and applied this EPB method to optimize protein–ligand docking in computational tests for a variety of protein–ligand systems. We tested the method on a set of 38 cocrystallized structures taken from the Protein Data Bank (PDB) and found that the maximum error was reduced from 7.98 ? to 2.03 ? when using EPB Dock, providing strong evidence that the use of EPB charges is important. We found that our optimized docking approach with EPB charges could improve the docking performance, sometimes dramatically, and the maximum error was reduced from 12.88 ? to 1.57 ? in Optimized Docking (in the case of 1fqx). The average RMSD decreased from 2.83 ? to 1.85 ?. Further investigations showed that the use of the EBP method could enhance intermolecular hydrogen bonding, which is a major contributing factor to improved docking performance. Developed tools for the calculation of the polarized ligand charge from a protein–ligand complex structure with the EPB method are freely available on GitHub (https://github.com/Xundrug/EPB).
机译:静电相互作用在蛋白质 - 配体结合中起重要作用。由于极化效果,静电相互作用主要受其本地环境影响。然而,传统的力场使用固定点电荷相互作用来描述静电相互作用,但不能包括偏振效果。在力场表示中缺乏偏振效应可以导致生物分子研究中的显着误差,例如分子动力学和分子对接。对接程序通常采用传统的力场来估计配体和蛋白质之间的结合能量,用于姿势选择或得分。分子间相互作用能量主要由van der Wa,和力场表示中的静电相互作用组成。在目前的研究中,我们开发了一种用于小型有机分子的有效可极化的键(EPB)方法,并应用该EPB方法以优化蛋白质 - 配体在计算试验中用于各种蛋白质配体系统的方法。我们在从蛋白质数据库(PDB)中取出的一组38个间聚结构的方法测试了该方法,发现最大误差从7.98降低?到2.03?使用EPB码头时,提供了强有力的证据表明EPB费用的使用很重要。我们发现,我们具有EPB收费的优化对接方法可以提高对接性能,有时会显着,最大误差从12.88减少?到1.57?在优化对接(在1FQX的情况下)。平均RMSD从2.83减少?到1.85?。进一步的研究表明,使用EBP方法可以增强分子间氢键,这是改善对接性能的主要贡献因素。开发用于计算来自蛋白质 - 配体复合结构的偏振配体电荷与EPB方法在GitHub上自由地提供(https://github.com/xundrug/epb)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号