...
首页> 外文期刊>Journal of Extracellular Vesicles >The EV-TRACK summary add-on: integration of experimental information in databases to ensure comprehensive interpretation of biological knowledge on extracellular vesicles
【24h】

The EV-TRACK summary add-on: integration of experimental information in databases to ensure comprehensive interpretation of biological knowledge on extracellular vesicles

机译:EV-Track摘要附加组件:数据库中实验信息集成,以确保对细胞外囊泡的生物学知识进行全面的解释

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Introduction Released in multiple body fluids, EVs protect their content from degradation and are increasingly considered for the development of novel clinical applications such as liquid biopsy tests [ 1 – 3 ]. The development of these tests is currently mainly driven by in-depth analysis of the protein and RNA cargo of EVs using omics approaches to identify biomarkers for disease. In addition, researchers aim to delineate EV functions in (patho)physiological conditions by integrating this knowledge on EV cargo [ 4 ]. Detection of EV-associated protein and RNA is highly valuable [ 5 – 7 ] but remains a challenge. Not all extracellular RNA and proteins are associated with EVs. Other extracellular macromolecular structures overlapping in size and/or density with EVs, such as protein aggregates, ribonucleoproteins and lipoprotein particles, contain RNA and proteins and are frequent contaminants in EV preparations [ 8 – 11 ]. Both the EV source and the method of choice determine the degree of specificity to which these contaminants can be separated from EVs [ 12 ]. A multitude of methods have become available to separate EVs from biofluids but each method achieves this with different specificity and efficiency, resulting in method-dependent identification of EV cargo [ 13 , 14 ]. To allow for the interpretation of contaminant-induced bias and to ensure reproducibility, transparent reporting of EV separation and characterization is crucial. To promote transparent reporting and reproducibility we released the open-source knowledgebase EV-TRACK that centralizes (meta) data of EV separation and characterization [ 13 ]. Currently, EV-TRACK includes experimental parameters of 2165?EV experiments from 1355 publications. For each experiment, the completeness of reporting the generic and method-specific information that facilitates interpretation and reproduction of the experiment is assessed by a checklist, summarized into the EV-METRIC (13; evtrack.org/about.php). Supported by the community, EV-TRACK has been included in the 2018 update of the MISEV guidelines (Minimal Information for Studies of Extracellular Vesicles) [ 15 ]. To enhance validation of EV-associated biomarkers and functions and, in general, to centralize knowledge on EV cargo, a multitude of databases have been created. EV-contained RNA and/or proteins are accessible on specialized databases such as EVpedia, Vesiclepedia, Exocarta, and more recently ExoRbase and EVmiRNA [ 16 – 20 ]. These databases are driven by community annotation and present cargo information retrieved using a variety of separation methods. Dependent upon the specificity of the method, this cargo thus associates with differential likelihood to EVs or extracellular macromolecular structures. As such, one of the main challenges of these databases is to ensure access to unbiased experimental information to interpret the EV content and thus to fit the purpose of biological knowledge discovery. By providing users the EV-METRIC linked to the EV-TRACK entry for reported studies, the 2019 update of Vesiclepedia was a first step towards integrating EV-TRACK knowledge in EV-related databases [ 21 ]. We present here the importance, development and integration of the EV-TRACK summary add-on to further integrate experimental information relevant to the interpretation of knowledge in databases and thus facilitate true EV cargo and function discovery using publicly available data. Development of the EV-TRACK summary add-on Currently, experimental information on EV separation and characterization provided by EV-related databases is limited and heterogeneously reported between platforms. To address this issue, we developed an EV-TRACK summary add-on ( Figure 1 ), which can easily be integrated in EV-related databases using the following hyperlink http://www.evtrack.org/study_summary.php?PMID= ?completed with the PubMed ID of the specific study. The summary add-on provides an instant overview of the nine experimental parameters that form the EV-METRIC, a measure for transparent reporting of separation and characterization methods (13; evtrack.org/about.php). Doughnut charts indicate the proportion of reporting adherence to each of the nine experimental parameters ( Figure 1 ). Where applicable, the study tree provides a schematic overview of different EV-related experiments and indicates the EV-METRIC for each individual study experiment. Additional experimental information can be viewed by clicking the EV-TRACK ID hyperlink, which redirects to the full entry in the EV-TRACK knowledgebase. For studies that have not yet been recorded in the EV-TRACK knowledgebase, users following this hyperlink will be invited to connect to the My EV-TRACK page and submit the publication for annotation. Once curation has been completed by EV-TRACK administrators, the EV-TRACK study summary will be automatically generated and become available on all EV-related databases providing the hyperlink to the EV-TRACK summary
机译:介绍在多种体液中释放,EVS保护其内容免于降解,越来越多地考虑开发新型临床应用,例如液检测试[1-3]。这些测试的发展目前主要是通过使用OMIC方法的EVS蛋白质和RNA货物的深入分析来驱动,以鉴定疾病的生物标志物。此外,研究人员旨在通过将这些知识纳入EV货物[4]来描绘(Patho)生理条件中的EV功能。检测EV相关蛋白和RNA是高价值的[5-7],但仍然是一个挑战。并非所有细胞外RNA和蛋白质都与EVS相关。与EVS的大小和/或密度重叠的其他细胞外大分子结构,例如蛋白质聚集体,核糖蛋白和脂蛋白颗粒,含有RNA和蛋白质,并且是EV制剂中常变的污染物[8-11]。 EV来源和选择方法都决定了这些污染物可以与EVS分离的特异性程度[12]。从生物流体分离EV的多种方法已经可用,但是每种方法都以不同的特异性和效率实现这一方法,导致EV货物的方法依赖性识别[13,14]。为了允许解释污染物诱导的偏差并确保再现性,EV分离和表征的透明报告至关重要。为了促进透明的报告和再现性,我们释放了集中的开源知识库EV-Track,即EV分离和表征的集中(Meta)数据[13]。目前,EV-Track包括2165的实验参数,来自1355个出版物的EV实验。对于每个实验,通过核对清单评估报告促进实验解释和繁殖的通用和方法特定信息的完整性,概述进入EV-Metric(13; evtrack.org/about.php)。通过社区支持,EV-Track已被列入2018年的Misev指导方针(细胞外囊研究的最小信息)[15]。为了提高EV相关的生物标志物和职能的验证,一般来说,为了集中到EV货物上的知识,已经创建了多种数据库。 EV含有的RNA和/或蛋白质可用于Evbedia,Vesicepedia,Exocarta等专业数据库,以及最近的exorbase和EvmiRNA [16 - 20]。这些数据库由社区注释驱动,并使用各种分离方法检索的货物信息。依赖于该方法的特异性,因此该货物因此与EVS或细胞外大分子结构相关的差异可能性。因此,这些数据库的主要挑战之一是确保访问不偏见的实验信息以解释EV内容,从而符合生物学知识发现的目的。通过向用户提供与报告研究的EV-Track条目相关的EV-Metric,2019年vesicePedia的更新是朝着EV相关数据库中集成EV-Track知识的第一步[21]。我们在这里展示了EV-Track摘要附加的重要性,开发和整合,以进一步整合与数据库中知识的解释相关的实验信息,从而促进使用公开数据的真正的EV货物和功能发现。 EV-Track摘要附加的开发当前,EV相关数据库提供的EV分离和表征的实验信息是有限的,在平台之间有限且异质地报告。要解决此问题,我们开发了EV-Track摘要附加(图1),可以使用以下超链接http://www.evtrack.org/study_summary.php?pmid=在EV相关数据库中轻松集成在EV相关的数据库中。 ?完成了具体研究的PubMed ID。 “摘要附加”提供了一种即时概述,该参数九个实验参数形成了EV-度量,这是分离和表征方法透明报告的措施(13; evtrack.org/about.php)。甜甜圈图表明报告依从九个实验参数的比例(图1)。在适用的情况下,研究树提供了不同的EV相关实验的示意性概述,并指示每个单独的研究实验的EV-odic。单击EV-Track ID超链接可以查看其他实验信息,该超链接将重定向到EV轨道知识库中的完整条目。对于尚未在EV-Track知识库中记录的研究,将邀请遵循此超链接的用户连接到My EV-Track页面并提交发布以进行注释。 EV-Track Administrators完成后,将自动生成EV-Track Studure摘要,并在所有与EV相关的数据库中获得提供超链接到EV-Track摘要的数据库

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号