首页> 外文期刊>Discrete dynamics in nature and society >Constraint Consensus Based Artificial Bee Colony Algorithm for Constrained Optimization Problems
【24h】

Constraint Consensus Based Artificial Bee Colony Algorithm for Constrained Optimization Problems

机译:基于约束共识的受限优化问题的人工群菌落算法

获取原文

摘要

Over the last few decades, evolutionary algorithms (EAs) have been widely adopted to solve complex optimization problems. However, EAs are powerless to challenge the constrained optimization problems (COPs) because they do not directly act to reduce constraint violations of constrained problems. In this paper, the robustly global optimization advantage of artificial bee colony (ABC) algorithm and the stably minor calculation characteristic of constraint consensus (CC) strategy for COPs are integrated into a novel hybrid heuristic algorithm, named ABCCC. CC strategy is fairly effective to rapidly reduce the constraint violations during the evolutionary search process. The performance of the proposed ABCCC is verified by a set of constrained benchmark problems comparing with two state-of-the-art CC-based EAs, including particle swarm optimization based on CC (PSOCC) and differential evolution based on CC (DECC). Experimental results demonstrate the promising performance of the proposed algorithm, in terms of both optimization quality and convergence speed.
机译:在过去的几十年中,已经广泛采用了进化算法(EAS)来解决复杂的优化问题。然而,EAS无力挑战受限制的优化问题(警察),因为它们不直接采取行动以减少约束违反受约束问题的关系。在本文中,人造群菌落(ABC)算法的鲁棒全局优化优势以及COMPS的约束共识(CC)策略的稳定计算特征(CC)策略被整合为一个名为ABCCC的新型混合启发式算法。 CC策略在进化搜索过程中迅速减少约束违规行为相当有效。所提出的ABCCC的性能通过与基于两种最新的CC的EA相比,包括基于CC(PSOCC)和基于CC(DECC)的差分演变的粒子群优化。实验结果表明,在优化质量和收敛速度方面,所提出的算法的有希望的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号