首页> 外文期刊>Data in Brief >Quantifying nuclear wide chromatin compaction by phasor analysis of histone F?rster resonance energy transfer (FRET) in frequency domain fluorescence lifetime imaging microscopy (FLIM) data
【24h】

Quantifying nuclear wide chromatin compaction by phasor analysis of histone F?rster resonance energy transfer (FRET) in frequency domain fluorescence lifetime imaging microscopy (FLIM) data

机译:通过对频域荧光寿命成像显微镜(FLIM)数据中的组蛋白F?奔跑谐振能量转移(FRET)的相分析来定量核宽染色质压实

获取原文

摘要

The nanometer spacing between nucleosomes throughout global chromatin organisation modulates local DNA template access, and through continuous dynamic rearrangements, regulates genome function . However, given that nucleosome packaging occurs on a spatial scale well below the diffraction limit, real time observation of chromatin structure in live cells by optical microscopy has proved technically difficult, despite recent advances in live cell super resolution imaging . One alternative solution to quantify chromatin structure in a living cell at the level of nucleosome proximity is to measure and spatially map F?rster resonance energy transfer (FRET) between fluorescently labelled histones – the core protein of a nucleosome . In recent work we established that the phasor approach to fluorescence lifetime imaging microscopy (FLIM) is a robust method for the detection of histone FRET which can quantify nuclear wide chromatin compaction in the presence of cellular autofluorescence . Here we share FLIM data recording histone FRET in live cells co-expressing H2B-eGFP and H2B-mCherry. The data was acquired in the frequency domain and processed by the phasor approach to lifetime analysis . The data can be valuable to researchers interested in using the histone FRET assay since it highlights the impact of cellular autofluorescence and acceptor-donor ratio on quantifying chromatin compaction. The data is related to the research article “Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response” .
机译:全局染色质组织核瘤之间的纳米间隔调节局部DNA模板接入,并通过连续的动态重排,调节基因组功能。然而,鉴于核心组包装在空间刻度上发生良好低于衍射极限,尽管最近在Live Cell超分辨率成像中最近进步,但技术上难以实时观察染色质细胞中的染色质结构。在核小核心邻近水平的活细胞中定量染色质结构的一种替代方案是测量和在荧光标记的组蛋白之间测量和空间地图F?窦枢轴共振能量转移(FRET) - 核小体的核心蛋白。在最近的工作中,我们建立了荧光寿命成像显微镜(FLIM)的相量方法是检测组蛋白卷的鲁棒方法,其可以在细胞自荧光存在下量化核宽染色质压实。在这里,我们共享Flim数据记录组蛋白褶皱,其在表达H2B-EGFP和H2B-MCHERRY中的活细胞中。数据是在频域中获取的,并通过Phasor方法处理寿命分析。这些数据对于感兴趣的研究人员可以对使用组蛋白FRET测定的研究人员来说是有价值的,因为它突出了细胞自发荧光和受体 - 供体比对定量染色质压实的影响。该数据与研究制品“Phasor组蛋白脱脂显微镜测量在DNA损伤反应期间量化染色质架构的时空重排”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号